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Floating structures are widely used for vessels, offshore platforms, and recently considered for deep water
floating offshore wind system and wave energy devices. However, modelling complex wave interactions with
floating structures, particularly under extreme conditions, remains an important challenge. Following the three-
dimensional (3D) parallel particle-in-cell (PIC) model developed for simulating wave interaction with fixed
bodies, this paper further extends the methodology and develops a new 3D parallel PIC model for applications to
floating bodies. The PIC model uses both Lagrangian particles and Eulerian grid to solve the incompressible
Navier-Stokes equations, attempting to combine both the Lagrangian flexibility for handling large free-surface
deformations and Eulerian efficiency in terms of CPU cost. The wave-structure interaction is resolved via in-
clusion of a Cartesian cut cell method based two-way strong fluid-solid coupling algorithm that is both stable and
efficient. The numerical model is validated against 3D experiments of focused wave interaction with a floating
moored buoy. Good agreement between the numerical and experimental results has been achieved for the
motion of the buoy and the mooring force. Additionally, the PIC model achieves a CPU efficiency of the same
magnitude as that of the state-of-the-art OpenFOAM" model for an extreme wave-structure interaction scenario.

1. Introduction

In the past few decades, computational fluid dynamics (CFD)
methods have become more and more popular within the ocean en-
gineering field. Typical examples are the grid-based Eulerian model
such as OpenFOAM” and the particle-based Lagrangian model such as
the smoothed particle hydrodynamics (SPH) method based SPHysics.
While the former models are relatively efficient due to the use of a fixed
grid, the latter solvers are more suitable for handling large free-surface
deformations via using particles. In an attempt to combine the ad-
vantages of Eulerian and Lagrangian methods, the Particle-In-Cell (PIC)
method was invented through a combined use of particles and grid
(Harlow, 1955, 1964). Typically, the particles are used to solve the
transport terms and track the free-surface position, while the gird is
employed for solving the non-advection terms. Thus, it is possible to
achieve both Lagrangian flexibilities and Eulerian efficiency in the PIC
framework. However, sophisticated schemes must be developed for the
interaction between the fixed grid and the scattered particles in order to
drive the computation and maintain numerical accuracy and stability.

The early versions of the PIC method are successful, see e.g. Harlow
(1964), but have a few drawbacks such as high numerical dissipation,
low accuracy and demanding memory storage requirement. Later,
many attempts have been made to improve this method (see Brackbill
and Ruppel (1986); Brackbill et al. (1988); Nishiguchi and Yabe (1982,
1983)). More recently, high-order PIC variations have become possible
(see Edwards and Bridson (2012), Maljaars et al. (2018) and Wang and
Kelly (2018)). However, so far this hybrid method has not been very
well exploited for use in the ocean engineering field, where modelling
complex wave-structure interaction with computational efficiency still
remains an important challenge.

Early attempts of developing a PIC method based numerical model
for modelling wave-structure interaction processes in the coastal and
offshore environment can be found in Kelly, (2012); Kelly et al. (2015);
Chen et al. (2016a, b, 2017, 2018). These studies nevertheless have
shown great potential of the PIC method in becoming a high quality
CFD tool. In particular, Chen et al. (2016b) developed a Cartesian cut
cell method based two-way strong fluid-solid coupling algorithm for
wave interaction with floating bodies in their two-dimensional (2D) PIC
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framework. The key point of this coupling methodology is that the
velocity of the rigid floating body has been implicitly represented by
the pressure in cells immediately surrounding the solid. Thus, any im-
plicit calculations of the velocity fluxes along the solid surface required
by the cut cell method can be integrated into the procedure for solving a
suitably amended pressure Poisson equation (PPE). This makes the
proposed scheme both stable and efficient, as no iterations are needed
when dealing with wave interaction with freely moving structures. Very
recently, Chen et al. (2018) extended the PIC model of Chen et al.
(2016b) to three spatial dimensions, and parallelised the model using
the domain decomposition based Message Passing Interface (MPI) ap-
proach. Nevertheless, they only managed to apply the three-dimen-
sional (3D) parallel PIC solver to wave interaction with fixed or motion
prescribed structures.

Cut cell method has been widely employed in CFD modelling as an
alternative to the traditional structured or unstructured body-fitted
grid. Instead of having to regenerate the body-fitted grid as the
boundary moves, the cut cell method uses the boundary segment to
intersect with a stationary background grid, leading to simply different
cut cells that are composed of the boundary segment and grid cell
segments to represent the boundary surface. Yang et al. (1997) devel-
oped a Cartesian cut cell method applicable to compressible flows
around static and moving bodies. Causon et al. (2000, 2001) proposed a
Cartesian cut cell method for shallow water flows involving fixed and
moving boundaries. Qian et al. (2006) later employed the cut cell
method developed in the aforementioned papers to their two-fluid
solver involving fluid interaction with moving solids. While in the
aforementioned papers the cut cell method is developed in a collocated
Cartesian grid environment, Ng et al. (2009) proposed a cut cell method
within a staggered grid arrangement for fluid interaction with fixed and
motion prescribed structures. Later, their cut cell approach was devel-
oped by Chen et al. (2016b) to simulate 2D freely moving structures as
mentioned above. In this paper, the cut cell approach of Chen et al.
(2016b) is further extended to model 3D floating bodies.

In the open literature, investigations on wave interaction with
floating bodies have been carried out extensively using various nu-
merical models and physical experiments. Physical experimental data is
required to validate the numerical models, which in turn can help select
experimental conditions and reduce the cost of physical modelling
studies. Hann et al. (2015) experimentally studied focused wave in-
teraction with a simplified wave energy converter (WEC), consisting of
a free-floating buoy and a mooring system that encourages the occur-
rence of extreme snatch load. Ransley et al. (2017b) simulated regular
wave interaction with a freely-pitching, 1:10 scale model of the Wa-
vestar using OpenFOAM" and successfully reproduced the fully coupled
motion of the device. Using the same OpenFOAM" model, Ransley et al.
(2017a) studied focused wave interaction with the simplified WEC
presented in Hann et al. (2015), with an alternative mooring system
that does not encounter snatch loads. Their OpenFOAM” model well
reproduced the motion of the buoy and mooring load measured in
physical experiments. Omidvar et al. (2013) applied the SPH method
with variable mass distribution to a single heaving-float WEC, known as
the ‘Manchester Bobber’, in extreme waves and compared the results
with experiments in a wave tank. Lind et al. (2016) simulated the ex-
periment of Hann et al. (2015) using SPH with the Froude-Krylov ap-
proximation. Their SPH model well reproduces the snatch and non-
snatch mooring load in non-breaking waves, but predicts the snatch
mooring load less accurately in breaking waves. Gunn et al. (2018)
investigated regular wave interaction with a floating moored spherical
buoy also using the SPH method and provided experimental data for
validation. Their numerical results based on the SPH method are very
promising and compare well with the experimental measurements of
the motion of the buoy. These studies provide useful data for validating
other computational methods.

In this paper we further extend the 3D parallel PIC model proposed
in Chen et al. (2018) to simulate wave interaction with floating bodies
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using the fluid-solid coupling algorithm proposed in Chen et al
(2016b). In particular, as there is still a lack of confidence in the cap-
ability of numerical models on handling extreme wave events and their
interaction with floating structures (Ransley et al., 2017a), physical
experiments of focused wave interaction with a moored floating buoy,
encountering both snatch and non-snatch mooring load, are used to
validate the present numerical model. We show that the newly devel-
oped 3D parallel PIC solver is capable of modelling extreme wave in-
teraction with floating bodies both accurately and efficiently.

The paper is organised as follows: Section 2 gives an overview of the
current PIC model including the governing equations and major nu-
merical implementations. Next, in Section 3 the numerical model is
validated against an existing experiment of focused wave interaction
with a moored floating buoy. Finally, in Section 4 conclusions are
drawn.

2. Numerical model
2.1. Governing equations

The present PIC model solves the incompressible Newtonian Navier-
Stokes equations for single-phase flow:

Vou =0, 6))

5711 + (uV)u =
at (2)
where, in 3D, u = [u, v, w]" is the velocity field; f = [0.0,0.0,-9.81 m/
s%1T represents the body force due to gravity; p is pressure; ¢ is time, and
v and p are the kinematic viscosity and density of the fluid respectively.
Both a set of particles and an underlying grid are employed to discretise
the computational domain. Following Harlow and Welch (1965), a
staggered grid is used where pressures are computed at cell centres,
whose positions along the x-, y- and z-directions are labelled by the
indices i, j and k respectively, and velocities are calculated at the cen-
tres of relevant cell faces, whose positions are numbered with half-in-
teger values of the indices. Fig. 1 shows a schematic of the computa-
tional setup, where both the staggered grid and the fluid particles are
sketched. The particles carry the fluid properties such as the mass and
momentum, and are used to solve the nonlinear advection term (the
second term on the left hand side (LHS) of Eq. (2)) in a Lagrangian
manner and hence track the configuration of the fluid including the
free-surface position, while the underlying grid is employed solely for

f- le + vV2u,
P

Floatm @
body / free

e surface
‘\
,\\L\_ i
r
L]
\ particle
‘ =
I o . @)
vi,, +1/2 o &
o ffvi/ o 3 O O ®)
. i hi12.k e 411//,// .\) bOL
Py | M2k (@) Lﬁ % o
O
Staggered K
grid

Fig. 1. Sketch of the computational domain, the staggered grid and fluid par-
ticles.
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computational convenience for solving the non-advection terms in an
Eulerian sense. Initially, eight particles are seeded in each cubic cell
accommodating the fluid area, and as the simulation progresses cells
occupied by the particles are marked as fluid cells.

Two main steps are used to solve the governing equations, and they
are an Eulerian step and a Lagrangian step. First, in the Eulerian step
the governing equations are solved on the grid with the nonlinear ad-
vection term being ignored. Then, in the Lagrangian step the solution
on the grid including a divergence-free velocity field and an accelera-
tion field are used to update the velocity field carried by the particles,
and the remaining advection term is solved by moving the particles in a
Lagrangian manner. The fluid-structure interaction is resolved during
the Eulerian step and the velocity and position of the structure are
advanced during the Lagrangian step. It is noted that no turbulence
models are incorporated in the present numerical model, thus the test
case used for validation study in Section 3 is carefully selected. For full
details of the solution procedure, the interested reader is referred to
Chen et al. (2018). In what follows, the major components and equa-
tions used in the 3D PIC model are briefly introduced, with the im-
plementation of the fluid-structure interaction algorithm for freely
moving structures being highlighted.

2.2. Eulerian step

In the Eulerian step, the governing equations ignoring the nonlinear
advection term in the momentum equation are solved on the grid. Note
that prior to the solutions, the velocity field carried by the particles vy
at the time step n is mapped onto the grid to form a velocity field u".
This is done by using a kernel interpolation that conserves mass and
momentum (see more details in Chen et al. (2018)). The solution uses
the pressure projection method proposed in Chorin (1968). The gov-
erning equations are solved and the time is advanced in the following
steps:

u-—u"
=vVau" + f,
a v 3)
(u+! — i) .
= —p- V¥ n+l,
At oo @
Atp~'V2pntl = Vi, (5)
un+l =10 — AIP—IVPnJrl, (6)

where u” is a tentative velocity between u" and u"*! and At is the time
step. Eq. (5) is a pressure Poisson equation (PPE), which is discretised
and solved in a finite volume sense in the current solver. In addition,
during the solution of the PPE, the boundary conditions on both the free
surface and the structure surface are resolved.

Following Ng et al. (2009), the boundary conditions imposed on the
structure surface are:

nu=nU, and n(Ap~'Vp) = n-(U, — UI*Y) on dQg(x, 1), 7

where U, represents a tentative velocity on the structure surface; U+ is
the velocity on the structure surface at time step n + 1; n is the unit
outward normal vector of the structure surface and 8Qy represents the
structure surface. Integrating both sides of the PPE (Eq. (5)) over a fluid
cell, Gy, that is partially occupied by a solid structure and evoking the
divergence theorem and Eq. (7), a discretised PPE can be expressed by:
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where the subscripts are the space indices described in Section 2.1; E
represents the area of a cell face that is not occupied by structures; dA
represents the area differential; Ax, Ay and Az are the grid sizes in the
x-, ¥- and z-directions respectively and note that a uniform grid is
currently employed in the solver, i.e. Ax = Ay = Az. The interested
reader is referred to Ng et al. (2009) for the derivation of Eq. (8). It is
noticed that the last term on the right hand side (RHS) of Eq. (8) is a
velocity integral on the structure surface within the computational cell
Gijx, and the integral involves the velocity U™ imposed on the
structure surface at the time step n + 1. For fixed and motion prescribed
structures (e.g. a wavemaker), U/*' is known. However, for freely
moving structures, U/ is unknown at the time step n when Eq. (8)
needs to be solved. The Cartesian cut cell based two-way strong fluid-
solid coupling algorithm presented in Chen et al. (2016b) is employed
to resolve this issue. Here, the solution is to transfer the structure ve-
locity to the fluid pressures in cells immediately surrounding the
structure:

Ul = U™ + AtM;'Ip™! + AtM[(F, + Es), 9)

where U"+! and U™" are the structure velocities at time steps n + 1 and
n, respectively; M; is the mass matrix of the structure; J is an operator
that maps the pressures to net forces and torques on the structure; F,
denotes the force and torque on the structure due to gravity; Fy; re-
presents the external forces and torques due to, for example, moorings.
Once the structure velocity U"*! is constructed using Eq. (9), the ve-
locity integral in Eq. (8) can be expressed purely in terms of the pres-
sures to be solved for, leading to a revised PPE. The construction of
operator J and the handling of the velocity integral on the structure
surface are discussed in Section 2.4.1. The resulting linear system of
equations are solved using the bi-conjugate gradient (BCG) method
(Press et al., 1992).
On the free surface, the boundary condition enforced is:

p=0 onl(x, i), (10)

where {(x, t) represents the free-surface position reconstructed on the
grid based on the particle position. The implementation of the free-
surface boundary condition within the current PIC model is detailed in
Chen et al. (2018) and is not repeated here.

2.3. Lagrangian step

In this step, the velocity field carried by the particles is updated and
the particles are moved to solve the remaining nonlinear advection
term in a Lagrangian manner. To update the particle velocity in the PIC
framework, two approaches are commonly used. One is to directly in-
terpolate the velocity field from the grid, and the other is to increment
the particle velocity field through an acceleration field,
a"t! =yt — y on the grid. While the former approach is commonly
referred to as “classical” PIC (Harlow, 1964), the latter one is char-
acterised as “full particle” PIC (Brackbill and Ruppel, 1986). While
“classical” PIC is more dissipative and stable due to the velocity
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interpolation back and forth, “full particle” PIC leads to much less
numerical dissipation because the velocity increment is relatively small
at each time step. Nevertheless, by incrementing the particle velocity at
each time step “full particle” PIC also allows the associated numerical
errors to accumulate which can cause numerical instability (Jiang et al.,
2015). As a trade-off between numerical stability and accuracy, Zhu
and Bridson (2005) proposed using an empirical blending coefficient
between “classical” PIC and “full particle” PIC, which calculates the
final particle velocity by:

vg“ = c(v{,‘ + Z a”“S;) +(1 -0 Z u"tls;

i i an

where v, is the particle velocity; S; represents an interpolation function,
and c is the blending coefficient. Eq. (11) is used in the current PIC
framework, and c is set at 0.96 following Chen et al. (2016b) so as to
stabilise the code while keeping the associated numerical dissipation as
low as possible. After the velocity field carried by the particles are
updated, the particles are then moved through the divergence-free ve-
locity field on the grid using the third-order accurate Runge-Kutta
scheme of Ralston (1962). Details of these implementations are in-
troduced in Chen et al. (2018). Finally, after the particles are advected
one computational cycle of solving the Navier-Stokes equations is
completed.

As mentioned above, the velocity and position of the structure are
also advanced in this step. Following Chen et al. (2016b), the velocity of
the structure is updated using Eq. (9), with Jp"+! being replaced by an
integral of the fluid pressure over the wetted area of the structure
surface. Once the structure velocity is updated, the translational dis-
placement and rotational angle of the structure, D", is calculated by:

L Wwr Uty
=T Ak 12)

Assuming that all rotations are small at each time step, the sequence
of rotation becomes unimportant and the Euler angles are used in the
current implementation. Take (x, y, z) to be a point on the structure
surface with reference to a coordinate system localised at the moving
structure. After the rotations involving three angles (&, &,, 8;) with
reference to the axes of the local coordinate system, the new coordinate
of that point (X, Y, Z) within the local coordinate system is calculated
by:

Dn

cos8, cosd, — cosb, siné, sin @, sin 6

¥ + sin6, sinf, cosé;  + cosb, sinb, cosé;
[ Y ] = |cos8,sin€, cosb, cosé, — sin@, cos &,
V4

+ sin6y sinb, sinf,  + cosé, sin8, siné,

—siné, cos 8, sin 6, cos 8, cos &,

X
y]
E (13)

2.4. Additional numerical implementations

2.4.1. Construction of operator J

As discussed in Section 2.2, the two-way strong fluid-solid coupling
algorithm employed for floating bodies requires an operator J that
maps the fluid pressure to net forces and torques on the structure. The
operator J is formed following Batty et al. (2007). For example, the x-
component of the translational force on the structure can be written as:

Diyrjk — Py,
F=- .L’QSPndA=—MSVpde_§CVEHHJJ(WY
(14)

where dA and dV are the area and volume differential respectively;
Vit1/2.k is the volume of velocity cell that is occupied by the structure;
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the velocity cell in this case is the cubic cell whose centre is located at
Uiy1/2k- Here, in the 3D code the volume of velocity cell is computed in
the same manner as that proposed in Chen et al. (2016b). Rewriting Eq.
(14), the x-component of the translational force part of the operator J is
obtained:

I _ Vitzjk — Vi
Lij.k) = .
Ax (15)

The y- and z-components of the translational force part J ) and
J3¢ijk) are formed in the same manner.
Similarly, the torque on a structure can be expressed by:

T:_,[/;QS("—"c)XP"dA:ffLSVPx("—Tc)dV, 16)

where r; is the structure rotation centre and r is the point of action of a
fluid force fraction. Discretising and rewriting Eq. (16) in the same
manner as above, the torque part of the operator J with reference to the
x-axis, for example, is finally obtained:

Vijtrzk — Vij-1/2k
ay

4 Vijkrrz = Vije—172

AZ

Jagjr =— (Zijr — Z)

(VEJ‘k - Yc) s (17)
where Y. Z. and y; ko Zijk are the coordinates of the structure rotation
centre and the point of action, respectively. Note that the torque parts
with reference to the y- and z-axes J ; j x) and Js ; jx) are computed in the
same manner.

With the operator J being constructed, the structure velocity U"*!
can be explicitly expressed in terms of the pressure via Eq. (9), Eq. (15)
and Eq. (17). Therefore, the velocity integral at the RHS of Eq. (8) can
also be expressed as a function of the pressure in cells immediately
surrounding the structure. This is because the velocity at any point on
the structure surface can be calculated by:

Ul::+l — [I[n+l + U‘z+l xR , (18)

where U*!' and U*! are the translational and the angular velocities of
the structure at time step n + 1 respectively, and R = r — r. denotes a
vector pointing from the structure rotation centre to a point on the
structure surface.

The structure boundary is discretised into a set of triangular ele-
ments in the pre-processing. Fig. 2 shows a schematic of a computa-
tional cell cut by a structure surface (the grey area), for which the
triangular elements are also depicted.

So, in the cell G, for example, the velocity integral of Eq. (8) can
be approximated by:

Structure
- Surface
Computational
cell P
B |

‘ !
Fig. 2. A sketch showing a computational cell being occupied by a structure
whose surface (the grey area) is discretised into a set of triangular elements.



Q. Chen, et al.

gntl ~ . temp +1
fcwﬂs nUPdA = Y ne(UE™ + QM 3, AL, p™1))AA, 9
njk

where the subscript k represents the kth triangular element; n; is the
outward pointing unit normal vector; U™ represents the updated ve-
locity on the structure surface due to Eq. (18) and
U" + AtM;'(Fg + E,,) in Eq. (9), of which the variables are all knowns
at the time step n; Qy denotes the boundary velocity transferred from
the pressure immediately surrounding the structure; A4y is the area of
the triangular element; n, is the total number of triangular elements
located inside cell G;x. nj is computed at each time step by detecting
whether the centroid of a triangular element is located inside the cell or
not. This could lead to some errors when the discretisation elements of
the structure surface are relatively coarse. Therefore, in the present
work the triangular elements are generated with a characteristic area of
approximately (Ax)?/55. Note that ny, U/ and Qy are all defined at the
centroid of each triangular element, whose coordinates are denoted by
(XCE, YCE, ZCE).

In Eq. (19), U™ and Qy are calculated/constructed according to
Eq. (18), with U*! and U*! (see Eq. (18)) being the velocity compo-
nents due to U" + AIM;I(};. + Ey) (for calculation of U/™) and
AtM;'Jp™*! (for construction of Qy), respectively. For example, the x-
direction component of Q, = (UX, VY, WZ) is expressed by (assuming
that the rotational centre coincides with the centre of mass):

UX =AM Z 0 Tgpy

A':(121 Z?:l J4.qprf+l + I E;:l “Tf?.qPrfJrl + I3 ZZLI Jﬁ,qP;H](ZCE - Z)-

At [131 Z;ﬂzlh,qpq”“ + L qun:l JT5,qP,;,Prl + L Z;n:l-fﬁ,quﬂ](yaf - Y)

= Yoo Beal)
(20)

where M is the mass of structure; the subscript g denotes the index of
the cells immediately surrounding the structure (i.e. partially occupied
by the structure) and m is the total number of such cells at each time
step; Iopp (@ =1, 2,3 and b = 1, 2, 3) is the element of the 3 X 3 inverse
matrix of the moment of inertia matrix of the structure; By, is the x-
direction component of a coefficient vector B, = (B, 4. By q: B;¢) that is
related to the calculations of UX, VY and WZ. Note that VY and WZ are
constructed in the same manner, as are the coefficients B, ; and B g,
respectively. The Qy related term in Eq. (19) (..
ijk - Qp (M, J, At, p"*1)AA;) connects all pressures immediately
surrounding the structure, and is added to the LHS of Eq. (8), modifying
the coefficient matrix of the linear system of equations. The coefficient
matrix is now not necessarily symmetric or positive definite due to the
above manipulation, as the Q; related term changes between cells due
to the different cell volumes occupied by the structure in each velocity
cell. However, the linear system of equations under these conditions are
still solvable using the BCG solver (Press et al., 1992).

2.4.2. Numerical wave tank

In the present work, a numerical wave tank (NWT) is established
following Chen et al. (2018). Uni-directional waves are generated in the
x-direction by a piston-type wave paddle employed at one end of the
NWT, and the waves are absorbed at the other end of the NWT by a
relaxation zone. For full details of the NWT in the current PIC model,
the reader is referred to Chen et al. (2018).

2.4.3. Numerical algorithm

The numerical algorithm used in the present model basically follows
that presented in Chen et al. (2018). For presentation simplicity, only
the major components with respect to the modelling of freely moving
structures are given below.
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(1) Calculate U" + AtM;'(F, + E,,) in Eq. (9);

(2) Move the piston-type wave paddle according to the wave gen-
eration method;

(3) Map the mass and momentum carried by the particles to the grid
and reconstruct the free-surface position on the grid based on the
particle location;

(4) Construct Eq. (19) and Eq. (8) and solve the resulting linear
system of equations;

(5) Project the tentative velocity field u™ onto a divergence-free ve-
locity field through Eq. (6);

(6) Calculate the velocity acceleration field "™ = u"*! — u" on the
grid;

(7) Update the structure velocity and then update the structure posi-
tion through Eq. (12) and Eq. (13);

(8) Update the velocity field carried by the particles through Eq. (11)
and then advect the particles;

(9) Conduct wave absorption in the relaxation zone;

(10) Update the time step (see details in Chen (2017)) and repeat steps
(1)-(10).

3. Results and discussions

In this section, the present numerical model is validated against the
laboratory measurements of focused wave interaction with a floating,
hemispherical-bottomed, cylindrical buoy with different mooring con-
figurations: (1) a linearly-elastic mooring that encounters non-snatch
loads (Ransley et al., 2017a); (2) more complex mooring system that
encourages snatch loads (Hann et al., 2015). In both test cases the
numerical model is validated first for the focused wave generation in
the absence of the buoy, and then for the motion of the buoy and
mooring force under focused wave action.

3.1. Test case 1: mooring configuration with non-snatch loads

3.1.1. Experimental setup

The experiment of Ransley et al. (2017a) was performed in the
Ocean Basin at Plymouth University's Coastal, Ocean And Sediment
Transport (COAST) laboratory. The basin is 35 m long and 15.5 m wide,
with 24 flap-type wave paddles installed at one end and a parabolic
beach at the other. The water depth at the wavemaker was 4 m and
decreased to 2.8 m in the region where the buoy was placed. The buoy
has a diameter D = 0.5m and consists of a hemispheric at the bottom
and a cylinder on the top (see Fig. 3). The buoy has a total mass of
43.2 kg, and its centre of mass is located at 0.181 m from the bottom.
The moment of inertia of the buoy is (1.61 1.61 0.5) kgmz. The motion
of the buoy was restrained by a single point mooring, of which one end
was attached to the bottom of the buoy and the other was fixed at the
basin floor. The mooring can be modelled as a linear spring, having a
stiffness k = 67 Nm ! and a rest length of 2.18 m. Note that in this
case the buoy can move in all 6 degrees of freedom. The focused wave
was generated using the NewWave theory based on the Pierson-Mos-
kowitz (PM) spectrum ( fp = 0.356 Hz) and wave gauges throughout
the basin were used to measure the generated wave. For more details of
the experimental setup, the reader is referred to Ransley et al. (2017a).

3.1.2. Numerical results: free decay test

Free decay tests of the buoy with and without the mooring were first
used to validate the present solver for simulating the motion of the buoy
and mooring force. The buoy was initially lifted up for a small distance
away from its equilibrium position and then released, leading to a
decay of the heave motion. In the numerical simulation, the buoy was
placed at the centre of a 6 m X 6 m square domain, with the water
depth being 2.8 m. A cylindrical relaxation zone centred at the buoy
with an inner radius of 1 m and an outer radius of approximately 3m
was used to absorb the radiated waves away from the buoy. The grid
size was set at Ax = Ay = Az = D/20 for the case without mooring. For
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Fig. 3. A sketch of the buoy (left) and a photograph from the COAST laboratory (right) showing the experimental setup. This figure is reprinted from Ransley et al.

(2017a), Copyright (2017), with permission from Elsevier.

the case with mooring, three grid sizes were used in order to conduct a
grid refinement study (note that the buoy is moored when interacting
with the focused wave). The grid sizes were Ax = Ay = Az = D/15,
D/20 and D/25. Note that the grid size D/25 leads to approximately 15.3
million grid cells and 100.8 million particles; it took approximately
8.3 h for 5s of simulated time with 64 cores at the University of Bath
High Performance Computing System (HPCS).

Fig. 4 shows the numerical results, in comparison with the experi-
mental data, for the free decay test. All of the experimental data used
for validation purposes in this test case are digitised from Ransley et al.
(2017a). From Fig. 4(left), it is seen that the three grid sizes produce
similar results, which indicates that the heave motion of the buoy in
this case is not sensitive to the grid sizes used. The numerical results in
general match well with the experimental data, although it is seen that
the numerical results are less damped than that of the experiment
especially towards the end of the time history. This is also seen in
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Fig. 4(right) which shows the comparison for the case without mooring.
This may be because the grid size is not fine enough when the buoy
motion is relatively small. However, the grid refinement study does not
suggest great potential for a significant improvement if the grid size is
further reduced, while maintaining feasible grid and particle resolution.
Another concern is that in Eq. (9) the friction-related force is not con-
sidered, which may result in an underestimation of the damping force.
As shown in the recent work of Gu et al. (2018), in the case of forced
heave motion of a similar hemispherical base structure, the contribu-
tion of shear force to the drag coefficient may be of the same magnitude
as that of pressure. However, due to the limited grid resolution in 3D
modelling, the calculation of friction-related force (even if it is included
in the current solver) is likely to be inaccurate as the boundary layer
would not be fully resolved (Nematbakhsh et al., 2013). One solution
may be to include a coupled dynamic adaptive grid and particle mer-
ging/splitting approach in the solver, such that the grid resolution
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Fig. 4. Comparison between the numerical and experimental data for the heave displacement of the buoy during the free decay test. Left figure: with mooring; right
figure: without mooring. The experimental data are digitised from Ransley et al. (2017a).
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Fig. 5. Scheme (top view) showing the setup of the NWT. WG: wave gauge.

around the structure could be sufficiently fine while the overall re-
solution is still feasible. Overall, the agreement between numerical and
experimental results is reasonably good. In particular, the result of the
case with mooring is as good as that without mooring, which provides
confidence in the numerical solver for predicting the motion of the
moored buoy under wave action. Note that based on the results the grid
size D/20 was chosen for all the other simulations in this test case.

3.1.3. Numerical results: focused wave generation

In the numerical simulation, a piston-type wave paddle based on the
first-order wavemaker theory was employed for wave generation and a
relaxation zone approach was used for wave absorption (see Section
2.4.2). For the focused wave generation, the motion and velocity of the
paddle were determined via the NewWave theory, based on the PM
spectrum. In total, 100 wave components were used, with the frequency
ranging from 0.2 Hz to 1.61 Hz. Fig. 5 shows a scheme of the setup of
the NWT. The wave paddle in the current simulation was placed at the
same location as that of the inlet boundary of the OpenFOAM" model by
Ransley et al. (2017a). Note that this location is 8 m forward from the
wave paddle used in the experiment. Ransley et al. (2017a) employed
the wave gauge measurement in the experiment at this location to de-
rive their expression based boundary conditions for the inlet boundary.
However, this experimental measurement was not reported in Ransley
et al. (2017a). Therefore, a trial and error process, adjusting the input
theoretical focused location and focused wave amplitude, was used in
the current wave paddle based simulation to generate the desired
waves. The input focused location and wave amplitude were de-
termined to be 5.2m (from the numerical wave paddle) and 0.25m
respectively for this test case. Note that the input focused location in the
experiment is expected to be much larger than 5.2 m. It is also worth
noting that in the current simulations the generated focused wave
amplitude was usually slightly larger than the input value, which is
consistent with the experimental findings presented in Hann et al.
(2015). This is, as also noted in Hann et al. (2015), due most likely to
the nonlinear effects related to wave-wave interaction, which could also
contribute to a shift of the actual focused location.

As the focused wave used in this test case was uni-directional (in the
x-direction), to reduce the CPU effort the numerical domain was set at
0.5 m wide (in the y-direction) and 30 m long (in the x-direction), with
22.5m dedicated to the relaxation zone. The water depth was set at
2.8 m. Note that the relaxation zone is relatively long because the peak
frequency of the PM spectrum used is small: fp = 0.356 Hz, which
leads to a wavelength of approximately 11.27 m. The relaxation zone is
thus set to nearly two times this wavelength in order to achieve the
most cost-effective performance within the present PIC framework
(Chen, 2017). The free-surface elevations at four locations, wave gauges
1 to 4 (see Fig. 5), along the x-direction centre line of the NWT were
extracted to compare with the experimental data, and their distances to
the wave paddle were (in metres): 1.96, 3.87, 5.60 and 6.33. Note that
wave gauge 3 is close to the focused location.
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Fig. 6. Comparison between the numerical and experimental results for the
free-surface elevations of the generated focused wave at four difference loca-
tions differing in the distance to the wave paddle. The experimental data are
digitised from Ransley et al. (2017a).

Fig. 6 shows the numerical results of the generated focused wave
compared to the experimental data. In general, it is seen that the
agreement between the numerical and experimental data is quite good.
In particular, the main crest and troughs are predicted well by the
numerical model. This proves that in this test case by placing the nu-
merical wave paddle closer to the actual focused location in the ex-
periment and using a smaller input focused location, the present NWT
can generate the desired focused wave, which provides a foundation to
meaningful comparisons in the wave-structure interaction shown in the
following section. However, it is not believed that the numerical wave
paddle can be placed too close to the actual focused location in the
experiment, as the development of wave-wave interaction requires both
space and time.

3.1.4. Numerical results: wave-structure interaction test

In this section, the focused wave described in Section 3.1.3 is used
to interact with the moored buoy. The numerical domain is 6 m wide
and 30m long, with 22.5 dedicated to the relaxation zone. The water
depth was set at 2.8 m. The buoy was placed at a distance of 5.49 m
from the wave paddle on the centre line of the NWT.

Fig. 7 shows the snapshots of the numerical results at various times
close to the focused time of the generated focused wave. In the snap-
shots, the width of the numerical domain is reduced and the mooring
line is not shown to aid visualisation.

Fig. 8 presents the numerical results of the present PIC model for the
surge displacement, heave displacement and pitch angle of the moored
buoy under focused wave action compared to the numerical results of
an OpenFOAM’ model (digitised from Ransley et al. (2017a)) and the
experimental measurements. In general, it is seen that very good
agreement between the numerical and experimental results has been
achieved, particularly during the period when the main crests and
troughs of the focused wave move past the buoy. Also, it is noticed that
around the third peaks of the surge and heave displacements, the pre-
sent PIC model produces better results than the OpenFOAM" model of
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Fig. 7. Snapshots of the numerical results for the focused wave interaction with
the buoy at different time instants. The mooring line is not shown but it is used
in the simulation.
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Fig. 8. Comparison between the numerical results of the present PIC model, the
numerical results of the OpenFOAM' model of Ransley et al. (2017a) and the
experimental data for the surge displacement (top), heave displacement
(middle) and pitch angle (bottom) of the moored buoy under focused wave
action. The experimental and OpenFOAM” data are digitised from Ransley et al.
(2017a).

Ransley et al. (2017a). This could be due to a slightly better re-
production of the incident wave around the third peak in terms of the
wave shape (see Fig. 6 at 5.6m and c.f. Fig. 2(c) of Ransley et al.
(2017a)). Another reason could be that after the main wave has passed
(resulting in large buoy motion), the quality of the dynamic mesh used
in the OpenFOAM" model is not as good as the initial one, which
however is not the case for the current cut cell method where the
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Fig. 9. Co mparison between the numerical results of the present PIC model,
the numerical results of the Open.FOAM' model of Ransley et al. (2017a) and
the experimental data for the mooring force on the moored buoy under focused
wave action. The experimental and OpenFOAM" data are digitised from Ransley
et al. (2017a).

underlying mesh is fixed and unchanged during the simulation. The
comparison for the pitch amplitude, however, shows a slightly less sa-
tisfying agreement during the period of free oscillation of the buoy after
the main wave has passed. This may be more evidence that the present
PIC model predicts less damping effects when the buoy motion is small
as discussed in Section 3.1.2. Nevertheless, the generally very good
reproduction of the motion of the buoy clearly demonstrates the cap-
ability of the present PIC model as well as the two-way strong fluid-
solid coupling algorithm for handling full 3D scenarios of wave inter-
action with floating bodies.

Fig. 9 shows the comparison for the mooring force. Again, very good
agreement between the numerical and experimental results has been
achieved, as a result of the good reproduction of the motion of the buoy.

Following the validation test, the motion of the buoy, without the
mooring, under the same focused wave action was also investigated
using the PIC model. This case could be considered as a situation when
the mooring fails. Although there is no experimental data to compare
with, the PIC model should be capable of predicting useful results since
it has been validated using the above moored case. The results are
plotted in Fig. 10, in comparison with those of the moored buoy. It can
be observed that the surge displacement of the buoy is greatly affected
by the mooring after the main focused wave has passed. Without the
mooring the buoy tends to be shifted in the wave direction, rather than
being pulled back as is the case when the mooring is attached. Simi-
larly, the mooring appears to play an important role on the pitch
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Fig. 10. Comparison between the numerical results of the motion of the buoy,
with and without the mooring, under the focused wave action: surge dis-
placement (top), heave displacement (middle) and pitch angle (bottom).
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Fig. 11. Comparison between the numerical results of the wave forces on the
buoy, with and without the mooring, under the focused wave action: wave force
in the surge direction F, (top), wave force in the heave direction F, (middle) and
pitch torque M, (bottom).

motion of the buoy. In the unmoored case, the amplitude and the period
of the pitch motion of the buoy are both larger. This is most likely
because of the missing restoring forces on the buoy due to the mooring.
Finally, it is seen from the middle panel that the heave displacement of
the buoy is less affected by the mooring, compared to the surge dis-
placement and the pitch angle. To understand this, the wave forces on
the buoy with and without the mooring are examined. Fig. 11 shows the
present numerical results for the wave forces on the buoy with and
without the mooring. As can be seen, the wave forces in the surge di-
rection (F,) and heave direction (F;) are less affected by the mooring
than the torque in the pitch direction (M,). However, the magnitude of
the wave force in the heave direction is one order greater than that of
the wave force in the surge direction, and the latter is in the same order
as the magnitude of the mooring force (see Fig. 9). Therefore, the
mooring has a smaller effect on the heave displacement of the buoy, as
the mooring force is relatively small compared to the wave force in the
heave direction. It is noticed that before the arrival of the main wave
group, the wave force in the heave direction is greater in the moored
case than that in the unmoored case. This is because that in the moored
case the mooring is pretensioned, resulting in a larger draft of the buoy
and hence larger hydrostatic force than those in the unmoored case.

Finally, in terms of the CPU cost on simulating the moored buoy
case, it took approximately 32.9 h for 30 s of simulated time using 160
cores at the University of Bath HPCS to run the present PIC model,
while it took almost 500 h of CPU time for 28 s simulation running on 6
processors for the OpenFOAM” model of Ransley et al. (2017a). As a
very rough comparison using a coefficient ¢ = %, the values of
¢ for the PIC model and the OpenFOAM® model are 176 and 107, re-
spectively. So, the hybrid Eulerian-Lagrangian PIC model achieves a
CPU efficiency of the same magnitude as the state-of-the-art Open-
FOAM" model. It may be worth mentioning that for the PIC simulation,
approximately 31.72 million grid cells and 253.75 million particles
were used to accommodate the water area only.

3.2. Test case 2: mooring configuration with snatch loads

3.2.1. Experimental setup

The experiment of Hann et al. (2015) is used for validation purpose
in this test case. This experiment was also conducted in the Ocean Basin
at Plymouth University's COAST laboratory. The same water depth
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(2.8 m) was used at the working section of the basin. Also, the same
buoy was used, but with a different mooring setup that encourages
snatch loads, which are transient but very large mooring forces ex-
perienced in extreme wave conditions (Lind et al., 2016). Here, the
mooring system was composed of a spring (k = 0.064 N/mm) in series
with a very stiff long Dyneema” rope (spring constant, k=~ 35 N/mm). In
addition, the maximum length of the spring was limited by another four
short Dyneema” ropes in a parallel arrangement. So, the mooring force
could encounter two phases: at first the mooring force is determined
only by the spring extension, and then after the spring reaches its
maximum length the snatch load occurs due to further extensions in the
ropes. The rest and the maximum lengths of the spring were 0.152m
and 0.406 m respectively, and in still water the spring was extended to
0.257 m. The focused wave used in this test case was generated in the
manner as that in the previous test case. Both breaking and non-
breaking waves were tested in the experiment, although only a non-
breaking wave case is used for the current numerical validation, namely
case ST1 in Hann et al. (2015) with peak frequency fp = 0.356 Hz and
measured crest amplitude A = 0.285 m. To simulate the breaking wave
cases, the numerical model would need further inclusions of an air
phase (for effects like air cushioning) and a turbulence model (to handle
the flow during and post wave breaking); the method presented in
Kamath et al. (2016) for numerical modelling of breaking wave inter-
action with a vertical cylinder should be referred to. For full details of
the experimental setup, the reader is referred to Hann et al. (2015).

3.2.2. Numerical results

In the experiment of Hann et al. (2015), the wave group of the
chosen case (ST1) was focused at 18.51 m from the wave paddle, which
was also located at the front face of the buoy in its initial rest location.
In the current numerical simulation, to save on CPU cost the focused
location was shifted to be 5.6 m from the wave paddle so that exactly
the same NWT as that in the previous test case can be used, with only
the buoy being placed at 5.85 m (= 5.6 + D/2) from the paddle. Also,
the same grid size (0.025 m) was used in this test case. Fig. 12 shows the
comparison between the numerical result and the experimental mea-
surement for the time history of the surface elevation at the focused
locations. It can be seen that the focused wave is well reproduced in the
numerical simulation, demonstrating that the setup of the NWT is ac-
ceptable for this test case. Note that the surface elevations are both
normalised by the theoretical crest value (0.267 m) used in the ex-
periment, and both data series have been shifted in time so that the
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Fig. 12. Comparison between the numerical and experimental results for the
free-surface elevation history at the focused locations (experiment: 18.51 m
from the wave paddle; simulation: 5.6 m from the wave paddle). Experimental
data are digitised from Hann et al. (2015).
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Fig. 13. Comparison between experimental and numerical results for (a) mooring load, (b) surge, (c) heave and (d) pitch motion of the buoy. The experimental
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Fig. 14. Numerical results of the mooring load run with different damping
ratios .

main crest occurs at t= 0s. All of the experimental data used in this test
case for validation purposes are digitised from Hann et al. (2015).

In the current simulation, once the spring reaches its maximum
length the snatch mooring load is calculated following Lind et al.
(2016):

10

E, = —kyyx,, — cXp. (21)
where k., is the equivalent spring constant for the mooring system and
is set to k,; = 28 N/mm following Lind et al. (2016), x,, and X,, are the
mooring extension and rate of extension respectively and ¢ = 2¢ me,
where ¢ is the damping ratio and m is the mass of the buoy. The
damping ratio has been determined numerically to be approximately
¢ = 0.25, although Lind et al. (2016) suggested using {= 0.175 ac-
cording to their SPH modelling on the same case. It will be seen in what
follows that the simulated snatch loads are sensitive to the damping
ratio.

Fig. 13 shows the comparison between experimental and numerical
results for the mooring load, surge, heave and pitch motion of the buoy.
Note that the mooring loads are normalised by the force required to
reach the maximum length of the spring (9.4 N), and the surge and
heave displacements of the buoy are normalised by the diameter of the
buoy. Moreover, all of the numerical data series have been shifted in
time so that the peak of the first snatch load occurs at t = 0 as is the
case of the experimental data. It can be seen from Fig. 13(a) that the
duration and occurring time of the snatch loads are well predicted by
the PIC model. Furthermore, the PIC model well predicts the peak of the
first snatch load but over-predicts the peak of the second snatch load by
approximately 55%. In fact, as seen from Fig. 14, the second snatch load
is more sensitive to the damping ratio ¢ (see Eq. (21)) than the first
snatch load. The peak value of the second snatch load decreases and
occurs earlier as the damping ratio increases. In addition, when the
damp ratio is set to zero the second snatch load is larger than the first
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one, and when the damping ratio goes very high (e.g. 0.45) an un-
physical third snatch load happens. These results are consistent with the
findings of Lind et al. (2016), and similar results from their SPH si-
mulation can also be seen in Fig. 13(a).

From Fig. 13(b) and (c) it can be seen that the current PIC model
well reproduces the surge and the heave responses of the buoy. In
particular, the double peaks occurring in phase with the snatch loads in
the heave motion are also predicted very well. However, as can be seen
from Fig. 13(d) there is a large discrepancy between the experimental
and numerical results for the pitch motion after the occurrence of the
snatch loads. While the numerical result follows the same trend as seen
in the previous elastic-spring mooring case (see Fig. 8), the experi-
mental data exhibit a relatively small pitch motion. The reason for this
large discrepancy remains unclear at the time of writing. In general, the
performance of the current PIC model is reasonably good in such a
complex wave-structure interaction scenario involving extreme snatch
mooring loads.

4. Conclusions

This paper extends the 3D parallel PIC model proposed in Chen et al.
(2018) to simulate extreme wave interaction with floating bodies, using
the Cartesian cut cell based two-way strong fluid-solid coupling algo-
rithm proposed in Chen et al. (2016b). The PIC model solves the in-
compressible Navier-Stokes equations for free-surface flows. The no-
velty of this model lies in the fact that both Lagrangian particles and
Eulerian grid are employed; the particles carry the fluid material in-
formation such as mass and momentum, and are used to solve the
nonlinear advection term and track the free surface, while the grid is
employed for computational convenience in solving all the non-ad-
vection terms. This makes the model both flexible on handling large
free-surface deformations and efficient in terms of CPU cost. The two-
way strong fluid-solid coupling algorithm features the fact that the
velocity of the structure is represented by the fluid pressures in cells
immediately surrounding the structure and any velocity integral along
the structure surface due to the cut cell method can be integrated into
the procedure of solving the PPE with a suitably amended coefficient
matrix. This technique can resolve fluid interaction with floating bodies
both stably and efficiently.

The present PIC model is validated against two existing physical
experiments of focused wave interaction with a floating, hemispherical-
bottomed, cylindrical buoy with either a linearly-elastic mooring or a
more complex mooring configuration that encourages extreme snatch
loads. Although both test cases involve extreme wave-structure inter-
action, the waves do not break and the structure has a smooth geometry
that tends to cause less turbulences so that the lack of a turbulence
model in the numerical simulations is acceptable. This is confirmed at
least in the first test case where both the laminar OpenFOAM” model
and PIC model have achieved good results compared with the experi-
ment. It is demonstrated through the comparisons with the experi-
mental data that the PIC model can satisfactorily predict the motion of
the moored buoy and the mooring force in such extreme wave-structure
interaction scenarios. Also, as demonstrated in the first test case, the
PIC model achieves a CPU efficiency of the same magnitude as that of
the state-of-the-art OpenFOAM" model.

Nevertheless, it is seen that the memory storage requirement is
demanding for the PIC model due to the double grid system. Also, the
PIC model may predict inaccurate damping effects when the buoy
motion is small, due likely to the limited grid resolution in 3D model-
ling. This situation may be improved by including in the solver a dy-
namic adaptive grid combined with particle merging/splitting, such
that the grid could be sufficiently fine around the structure while
maintaining a feasible overall grid resolution.
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