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Exceedance statistics in a sea state with Hs=8m, Tp=14s. Left: surge motion. Right: Front line mooring tension.
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Surge response in a focused group with H=12.8m, Tp=14s
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Conclusions and further work
* Results from tank tests indicate that adding a porous outer layer to a floating platform can reduce motion RAOs, leading to reduced loading and potentially increased energy capture
* Tank test results will be compared to numerical predictions from an iterative boundary element method (BEM) model [1, 2]

\' The BEM model will be used to investigate more practical designs and quantify impact on motion response and structural loads y
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