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a b s t r a c t

In this paper, a reliability aware multi-objective predictive control strategy for wind farm based on
machine learning and heuristic optimizations is proposed. A wind farm model with wake interactions
and the actuator health informed wind farm reliability model are constructed. The wind farm model is
then represented by training a relevance vector machine (RVM), with lower computational cost and
higher efficiency. Then, based on the RVM model, a reliability aware multi-objective predictive control
approach for the wind farm is readily designed and implemented by using five typical state of the art
meta-heuristic evolutionary algorithms including the third evolution step of generalized differential
evolution (GDE3), the multi-objective evolutionary algorithm based on decomposition (MOEA/D), the
multi-objective particle swarm optimization (MOPSO), the multi-objective grasshopper optimization
algorithm (MOGOA), and the non-dominated sorting genetic algorithm III (NSGA-III). The computational
experimental results using the FLOw Redirection and Induction in Steady-state (FLORIS) and under
different inflow wind speeds and directions demonstrate that the relative accuracy of the RVM model is
more than 97%, and that the proposed control algorithm can largely reduce thrust loads (by around 20%
on average) and improve the wind farm reliability while maintaining similar level of power production in
comparison with a conventional predictive control approach. In addition, the proposed control method
allows a trade-off between these objectives and its computational load can be properly reduced.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background and motivation

The wind turbines under awind farm are subject to unavoidable
failure rates caused by the highly intermittent and inherently sto-
chastic nature of the wind and environment [1]. Their failures
result in increased operation and maintenance (O&M) costs, and
consequently, increased cost of total energy production. The O&M
currently consist of a considerable portion of the total wind energy
costs, in particularly for the offshore case (up to 30%) [2]. As a result,
the reliability is particularly important for wind farm operations,
particularly for the offshore case. The structural loads caused by
xiaowei.zhao@warwick.ac.uk
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incoming wind are a major contributor to the wind turbine struc-
tural failures. The control and actuation (such as the electric/hy-
draulic pitch, yaw and torque control components) components in
wind turbines account for more than 65% of the total failures [3]. In
order to improve the wind farm’s power generation and reliability
while reducing O&M costs, it is necessary and imperative to design
and implement efficient control approaches to achieve high energy
capture efficiency and low maintenance costs [4].

On the other hand, the wind energy industry is also a data rich
sector with a large amount of data generated every day due to the
fast development of network technology and computing power [5].
These big data can be used to optimize operations of the wind farm
by providing efficient and effective decisions. Meanwhile, artificial
intelligence (AI) technology continues to advance, which offers
great potential for optimizing the daily wind farm operations.
Therefore, the big-data driven AI approaches see a great opportu-
nity to be employed to the automatic wind farm operations due to
their numerous tangible benefits such as increased system effi-
ciency, stability and reliability [6].
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1.2. Literature review

Recent years, the optimal control for improving wind farm op-
erations and reliability has become a hot topic. In Ref. [7], an
optimization framework was presented to allow the optimization
of turbulent wind-farm boundary layers, where gradient-based
optimization methods were used with the aim of increasing the
total farm energy extraction. In Refs. [8], the game theory and
cooperative control were used to optimize energy production of
wind farms. In Ref. [9], the wind farm was modelled as a nonlinear
steady-statemodel and a distributed optimizationwas employed as
a global optimization framework to control all the turbines. The use
of a cooperative wind farm control approach to improve the power
production of a wind farm was described in Ref. [10]. A decentral-
ized model-free approach was presented in Ref. [11] for wind farm
power optimization with only limited information sharing among
neighbor wind turbines. A wind farm control strategy was pre-
sented in Ref. [12] to optimize the yaw settings of wind turbines by
taking into account the wake effects. A wind farm optimization
strategy under uncertainty was formulated and solved in Ref. [13]
to optimally steer the wakes in the presence of yaw angle
uncertainty.

The afore-mentioned wind farm optimization/control designs
relied highly on explicit information from the mathematical model
of wind farm, whose results may be suboptimal for such a
complicated, distributed and uncertain system. The data-driven
model-free optimization approaches may provide a better solu-
tion. To the best knowledge of the authors, there are very limited
researches in this area. The feasibility of a data-driven coordinated
control approach, Bayesian Ascent (BA) algorithm, was explored in
Ref. [14] to maximize the total wind farm power production. In
Ref. [15], the cooperative wind farm control was studied to maxi-
mize the total wind farm power generation by incorporating a
strategy that regulates the trust region into the Bayesian optimi-
zation framework.

Nevertheless, the above data-driven approaches still highly
depend on an analytical wind farm power function and are tailored
to specific experimental studies using scaled wind turbines. The
employed BA algorithm is also composed of online learning and
optimization phases. The BA algorithm approximates the target
function using Gaussian process regression in the learning phase,
and determines the next sampling point to improve the target
value in the optimization phase. Therefore, this BA approach is
naturally flawed with limited regression capability and control
flexibility considering volatile wind directions, and inevitably in-
volves additional large computational burden. Besides, the afore-
mentioned approaches generally use simple single distribution
optimization while the reliability aspects of wind farms have not
been taken into account.

1.3. Contributions of the work

The present paper aims to develop a reliability aware multi-
objective predictive control approach for wind farm based on ma-
chine learning and heuristic optimizations. The high-fidelity wind
farm model is represented by training the RVM with low cost and
high efficiency. Consequently, a multi-objective predictive control
strategy is conducted based on the trained RVM to maximize the
power generation and reliability of wind farm, and simultaneously
minimize its thrust force (thus reducing maintenance costs and
maximizing lifetime of the wind turbines). Five typical state of the
art meta-heuristic evolutionary optimization algorithms including
the third evolution step of generalized differential evolution
(GDE3), the multi-objective evolutionary algorithm based on
decomposition (MOEA/D), the multi-objective particle swarm
optimization (MOPSO), the multi-objective grasshopper optimiza-
tion algorithm (MOGOA), and the non-dominated sorting genetic
algorithm III (NSGA-III) are used in the proposed control method
which is then tested and compared with a conventional predictive
control method. The extensive computational experiments based
on FLORIS are conducted to verify the effectiveness of the proposed
control.

The RVM model and its advanced version, hybrid RVM model,
have been employed in the recent research including wind speed/
power predictions, reference evapotranspiration forecasting and
prognostics. In Ref. [16], a wind speed prediction approach was
designed by using the hybrid model of wavelet decomposition and
artificial bee colony algorithm-based RVM model. In Ref. [17], a
hybrid RVM model was presented to predict future daily reference
evapotranspiration. In Ref. [18], a hybrid RVM wind power proba-
bilistic forecasting model was designed by using five kernel func-
tions, and its forecasting performance was demonstrated. In
Refs. [19], a RVM model was used to predict the short-term power
output from raw data of a wind farm based on the differential
empirical mode decomposition. In Ref. [20], a hybrid prognostic
scheme combining the RVM and particle filter was presented for
uncertainty assessment. However, the above-mentioned recent
applications of the RVM or the hybrid RVM models mainly focused
on the prediction or forecasting, while control designs based on
RVM model, especially the wind farm predictive control, have not
been investigated.

The main novelty and contributions of the paper are highlighted
as follows:

(a) Distinguished from the previous approaches that rely on
detailed analytical wind farm model, the proposed data
driven RVM model framework is computationally efficient,
highly accurate and simple in multi-objective wind farm
modelling.

(b) The proposed multi-objective predictive control framework
not only can maximize the wind farm power generation, but
also can reduce wind farm thrust loads and simultaneously
improve the wind farm reliability. It allows a trade-off be-
tween these three objectives. The predictive control perfor-
mances can be readily ensured through large-scale realistic
data, which indicates good potential in practical applications.

(c) Different from other existing approaches, the proposed
multi-objective predictive control approach can be well uti-
lized to find a set of non-dominated optimal trade-off solu-
tions among several competing objective functions by
explicitly considering the effects of different constraints in
control inputs. It is also characterized by decoupled predic-
tion and predictive control, higher flexible extendibility and
universal regression capabilities in terms of inputs, outputs
and short time window.

2. Wind farm modelling

The output power and thrust force are two key parameters in
evaluating power generation performance and reliability of a wind
farm, respectively. In addition, the reliability is also significantly
influenced by the failure rates of the turbine actuators. Therefore,
this section focuses on developing a wind farm model by consid-
ering the thrust force and actuator health informed wind farm
reliability.

2.1. The wind farm model with wake interactions

For awind farm consisting ofNwind turbines denoted by the set
D ¼ {1, 2,…, N}, its model is highly characterized by turbine wake
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interactions which can be described by a multi-zone model [12]. In
themulti-zonemodel, threewake zones (near-wake zone, far-wake
zone, and mixing-wake zone) are defined to model the effects of
partial wake overlap and wake velocity profile, especially in yawed
conditions. For a two-turbine model as shown in Fig. 1, the effective
wind velocity at the downstream turbine j can be modelled by
combining the effects of the wake zone of each upstream turbine i.
Vj ¼V∞ cosðf� 270Þ
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where V∞ is the free stream inflow wind speed, f is the angle of
wind direction as shown in Fig. 1, Aol

i;j;q; q ¼ 1;2;3 is the overlapping
areas of the three wake zones with the turbine rotor (q ¼ 1, 2, 3
corresponding to the three wake overlap zones), Xi and Xj are
respectively the x-axis locations of the turbines i and j, Aj is the
rotor area of the downstream turbine j, Di, ai and gi are respectively
the rotor diameter, axial induction factor and yaw offset of the
turbine i, ke is a wake coefficient defining both wake expansion and
wake recovery.

The mU;qðgiÞ in Eq. (1) is defined as

mU;qðgiÞ¼
MU;q

cosðaU þ bUgiðtÞÞ
; q¼1;2;3 (2)

whereMU;q is a tuned scaling factor, aU and bU denote tuned model
parameters.

As shown in Eqs. (1) and (2), the effective wind velocity at the
downstream turbine is not only determined by the inflow wind
speed and direction, but also significantly influenced by the oper-
ating parameters (including the induction factors and yaw angles)
of the upstream wind turbines. This illustrates the wake in-
teractions within the wind farm.
Fig. 1. The wake expansion model of the turbines i and j (top view). In the reference frame
orthogonal to the x-axis along the crosswind direction. The inflow wind direction is define
The wind farm power is an aggregation of the individual wind
turbine power outputs:

Pavg ¼ 1
2N

XN
j¼1

rAjcos
1:88�gj�V3

j Cpj
�
lj; bj

�
(3)

where Pavg is the averaged wind farm power output, r is the air
density, and Cpj is the power coefficient of a typical turbine j in the
wind farm.

The wind farm thrust force is given by

Favg ¼ 1
2N

XN
i¼1

rAjcos
1:88�gj�V2

j CTj
�
lj; bj

�
(4)

where Favg is the averaged thrust force, and CTj is the thrust
coefficient.

The power coefficient CPj is a function of the tip speed ratio lj
and the blade pitch angle bj:8>>>>>>>>>>>><>>>>>>>>>>>>:
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ujRj
VjðtÞ

;

CPj
�
bj; lj

� ¼ 0:5176
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!�21
lj þ 0:0068lj;

lj ¼
1

lj þ 0:08bj
� 0:035

b3j þ 1
:

(5)

where Rj is the rotor radius, and uj is the rotor speed.
(x, y), the x-axis points downwind along the free stream inflow direction, the y-axis is
d with respect to the north direction.
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The power and thrust coefficients CPj and CTj can also be rep-
resented as

�
CPj
�
aj
� ¼ 4aj

�
1� aj

�2
;

CTj
�
aj
� ¼ 4aj

�
1� aj

�
:

(6)

where aj is the axial induction factor of the turbine j.
By solving Eq. (6), one obtains the relationship between CPj and

CTj as follows

CPj¼
CTj
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CTj

q �
2

: (7)

As shown in Eq. (7), the turbine thrust coefficient is directly
related to the power coefficient which is described in Eq. (5).
Therefore, by observing Eqs. (5) and (7), it is obvious that the thrust
coefficient CTj can also be determined by the tip speed ratio lj and
the blade pitch angle bj.

For a typical turbine j within a wind farm, the turbine rotor
torque is defined as [10].

TWj ¼
prR5j u

2
j

2l3j
cos1:88

�
gj
�
CPj
�
bj; lj

�
(8)

Considering the turbine j equipped with gearbox transmission
and a generator, one can obtain the drivetrain dynamics as [21].

Jtj _uj ¼ TWj
�
bj; lj

�� Dtjuj � ngjTej (9)

where Jtj is the rotor inertia, Dtj is the external damping of the rotor,
ngj is the gear ratio, and Tej is the generator (electromagnetic)
torque.

As shown in Eq. (9), the turbine rotor speed uj can be controlled
by regulating the generator torque which is equivalent to the
generator current control through a power converter located be-
tween the generator and grid [21]. Since the rotor speed uj is
directly related to the tip speed ratio lj, the power and thrust co-
efficients CPj and CTj as shown in Eqs. (5) and (7), it is obvious that
the power and thrust coefficients CPj and CTj can also be regulated
by using the generator torque or the generator current. Therefore,
due to the direct relationships among CPj, CTj, Pavg , and Favg as
shown in Eqs. (3) and (4), the averagedwind farm power and thrust
force can also be regulated by using the generator torque or the
generator current.

Then, by considering Eqs. (1)e(9), the averaged wind farm po-
wer and thrust force can be determined based on the inflow wind
speed and direction, and turbine control parameters including the
yaw angle inputs, the blade pitch angles, and the generator torque
inputs. As a result, considering the time delay of wake propagation
within the wind farm, the wind farm power and thrust force can be
determined as a vector-valued functionwith sampling time interval
delay as these control inputs under certain inflow wind speed and
direction. Hence,
yðkþ1Þ¼ ½y1ðkþ1Þ; y2ðkþ1Þ�¼ �Pavgðkþ1Þ; Favgðkþ1Þ	¼ f
�
u1ðkÞ;u2ðkÞ…ujðkÞ…;uNðkÞ

�
(10)
where fð ,Þ is the vector valued nonlinear function of the averaged
power and thrust force, uj ¼ ðbj;gj; TejÞ is the control actuation for
the turbine j, and k is the sampling time instant.

2.2. Actuator health informed wind farm reliability model

In order to improve wind turbine efficiency and performance,
the actuators for the yaw angle, blade pitch angle and generator
torque in a modern wind turbine are actively regulated to generate
control actions. However, the increasing use of these control efforts
will deteriorate the actuator health or reliability, and will also
negatively affect the overall reliability of the wind farm. Therefore,
in order to guarantee the reliability, it is rational to take the actuator
health into consideration and establish the wind turbine/farm
reliability model based on the loss of effectiveness of control
actuators.

The reliability of the control actuators can be established based
on their failure rates under degraded functional conditions, and the
trend of actuator degradation according to the variations of the
operating conditions needs also to be considered. Commonly, the
exponential form for actuator reliability estimation is used and is
directly related to the actuator control input [22].

For the i th actuator in the j th wind turbine, the actuator reli-
ability can be modelled as a conditional probability [23]. Therefore,

8><>:
RiðtÞ ¼ expð � hitÞ;

hi ¼ h0i exp

" ðt
0
u2i ðtÞdt

tðuimax � uiminÞ

#
:

(11)

where Ri(t) denotes the reliability of the i th actuator until the
current instant time t, h0i represents the nominal failure rate or
baseline failure rate, ui(t) is the control effort at time t, uimax and
uimin are respectively the minimum and maximum allowed control
effort for the i th actuator.

By assuming that all the components for the turbine j are
mutually independent, the turbine reliability can be determined by
the reliability of its components. Therefore,

RTjðtÞ¼1�
Ym
i¼1

ð1�RiðtÞÞ (12)

where RTjðtÞ denotes the reliability for the j th wind turbine, and m
denotes the number of actuators installed in the j th wind turbine.

Based on Eqs. (11) and (12), the overall reliability of the wind
farm composed by Nwind turbines can be obtained as follows [24].

RFðtÞ¼1�
YN
j¼1

�
1�RTjðtÞ

�
(13)

where RF ðtÞ denotes the wind farm reliability at the time t.
By using t ¼ kTs in discrete form, Eq. (11) can be re-written as
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8>>>><>>>>:

RiðkÞ ¼ exp½ � k,Ts,hiðkÞ�;

hiðkÞ ¼ h0i exp

26664
Pk
k¼0

u2i ðkÞ
k,ðuimax � uiminÞ

37775:
(14)

where Ts is the sampling time interval.
Accordingly, the wind turbine reliability model (12) and the

wind farm reliability model (13) can be respectively transformed
into the discrete time forms as RTjðkÞ and RFðkÞ by using Eq. (14),
which will facilitate the predictive control design in the following
sections.

As shown in Eq. (11)~(14), the wind turbine/farm reliability
exhibits an inverse relationship with the control efforts delivered
by the actuators. Therefore, in order to reduce the O&M costs, it is
desirable to integrate actuator health information in the wind farm
control and minimize the degradation rate of the most sensitive
actuators such as yaw, pitch and generator torque control actuators.

3. The RVM modelling of wind farm

Although the wind farmmodel can be represented by Eq. (10), it
is generally very difficult to derive an analytical expression due to
the complex aerodynamic interactions. Also, it is rather difficult to
explicitly represent stochastic meteorological conditions including
wind speeds, directions and turbulence by deterministic analytical
models. Even though the wind farm model can be represented by a
simple and quick multi-zone model [12], it is difficult to use such a
model to fully represent the complex aerodynamic interactions
under various meteorological conditions. On the other hand, the
actual wind farm operations are highly characterized by large-scale
realistic data, which indicates very good potential of using a sur-
rogate model to accurately represent wind farm performances by
learning the realistic data.

Therefore, rather than deriving a detailed analytical model for a
wind farm, a machine learning model is trained as the surrogate
model based on sample data to represent the model in Eq. (10),
thereby reaping the benefits of both the lower cost and higher ef-
ficiency of wind farm modelling. The machine learning model is
established based on the RVM, which is a Bayesian sparse kernel
technique for regression using kernel functions [25].

3.1. The RVM

Considering Eq. (10) and denoting u ¼ ½u1ðkÞ; u2ðkÞ…ujðkÞ…;

uNðkÞ�, y ¼ yðk þ 1Þ, the wind farm model is designed as y ¼ fðuÞ,
which can be readily represented by using the RVM. Therefore, for a
given training dataset of n control input vectors u and the corre-
sponding target output vector y, the RVM can be trained to predict
the target y as by. By assuming the target output includes zero-mean
Gaussian noise with variance s2, the probability of prediction error
ε is a Gaussian distribution with zero mean and variance s2.

The RVM model is designed as [26].8><>:
yi ¼ byi þ εi;

byi ¼ w0 þ
Xn
j¼1

wiK
�
ui;uj

� ¼ w4ðuiÞ: (15)

where yi and byi are respectively the i th target output and predic-
tion, w ¼ ½w0;…;wn� denotes the weight vector, 4ðuiÞ ¼
½1;Kðui;u1Þ;…;Kðui;unÞ�T and Kðui;ujÞ denotes the kernel function.

The likelihood function or probability of the target output y can
be established as [26].

p
�
y



w; s2

�
¼ð2pÞ�n

2s�n exp
�
� ky � byk

2s2

�
(16)

where F ¼ ½4ðu1Þ;…;4ðunÞ�T and

by ¼FwT (17)

In order to avoid overfitting, a prior zero-mean Gaussian dis-
tribution is defined to complement Eq. (16) over the weight vector.
Therefore,

pðwjaÞ¼ ð2pÞ�n
2
Yn
[¼1

a
1
2
[exp

�
� a[w2

[

2


(18)

where a ¼ ½a0;…;an�T is a hyper-parameter vector for controlling
the deviation of w from zero.

By using the Bayes’ rule [27], it is easy to express the posterior
probability over w as

p
�
w



y;a; s2�¼p

�
y


w; s2

�
pðwjaÞ

p
�
y


a; s2� ¼NðUjm;SÞ (19)

where m and S are respectively mean and covariance given as(
U ¼

�
A þ s�2FTF

��1
;

m ¼ w ¼ s�2SFTy:
(20)

where A ¼ diagða0;…;anÞ and is the estimate of w.
The vector a can be estimated based on the sparse Bayesian

learning that is formulated as the local maximization logarithm
L(a) with respect to a as follows [26].

LðaÞ¼ �
h
n ln 2 pþ ln



s2IþFAFT

þ yT
�
s2IþFAFT��1

y
i

2
(21)

The most probable value of the vector a can be obtained by
maximizing Eq. (21) with respect to a. Then, by substituting the
value of a into Eq. (20), A, m and S can be obtained accordingly.

Therefore, the RVMmodel of thewind farm in Eq. (15) can be re-
formulated as follows

byi ¼m0 þ
Xn
j¼1

mi exp
�
�
��ui � uj

��
s2


(22)

where the radial basis function Kðui;ujÞ ¼ exp
�
� kui�ujk

s2


is used

in Eq. (22) as the kernel function.
As described in the above Eq. (15)~(22), the RVM model pro-

duces the wind farm predictions in a probabilistic manner and the
extreme sparsity of the RVMmakes the predictions highly efficient.
Unlike the point estimates in support vector machine (SVM), the
RVM typically provides a sparser solution and the number of sup-
port vectors in the RVM grows linearly with the size of the training
dataset. Therefore, the RVM avoids the principal limitations of the
SVM, and typically leads to much sparser model and correspond-
ingly faster prediction performance [28].

3.2. The RVM modelling procedure

Based on the above Eq. (15)~(22), the RVMwind farmmodel can
be constructed in two phases: a parameter selection phase and a
training phase. The parameter selection phase is used to select
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necessary RVM parameters such as the best training set sizes. The
RVMmodel will then be trained and derived based on the following
steps:

(1). Classify the input/output data of a wind farm into training,
validation and test sets.

(2). Choose suitable RVM parameters and train the RVM for the
averaged power output and thrust force using the training
set.

(3). Evaluate the trained RVMmodel using the validation set and
calculate the mean absolute percentage errors.

(4). Determine the best trained RVM model in terms of the
minimum mean absolute percentage forecasting error.
4. The multi-objective predictive control

Based on the data-driven RVM model of the wind farm in sec-
tion 3, the multi-objective predictive control for the wind farm can
be readily designed. Therefore, in this section, the control objec-
tives, the control formulation and the control solution are pre-
sented to detail the control procedure, which ultimately aims to
maximize the profits from the wind farm and simultaneously
improve the wind farm reliability.
4.1. The control objectives

For the multi-objective predictive control problem, three
objective functions are first defined, which are equivalent to con-
trolling the set-points for eachwind turbine tomaximize the power
production of the whole wind farm while minimizing the me-
chanical thrust loads and improving the actuator health informed
wind farm reliability (section 2.2.).

The control objectives are defined as follows:

(a). Maximizing the averaged wind farm power production
obj1¼
XH
h¼1

by1ðkþhjkÞ (23)

where ŷ1(k þ hlk) denotes the predicted wind farm power at the
time step kþ h based on the information available at the time step k
by using the RVM model in section 3, H is the prediction horizon.
(b). Minimizing the averaged wind farm thrust loads
obj2¼
XH
h¼1

by2ðkþhjkÞ (24)

where ŷ2(k þ hlk) denotes the predicted wind farm thrust at the
time step kþ h based on the information available at the time step k
by using the RVM model in section 3.

(c). Maximizing the actuator health informed wind farm reli-
ability (section 2.2.)
obj3¼
XH�1

h¼0

RFðkþhjkÞ (25)

where RF(k þ hlk) denotes the future wind farm reliability at the
time step kþ h based on the information available at the time step k
by using the wind farm reliability model in section 2.2.

The above three control objectives consist of the wind farm
output predictions that can be computed recursively from the RVM
model. The objectives are naturally contradictory to each other and
hence the predictive control aims to find a trade-off solution to
satisfy the requirements of all the above control objectives.

4.2. The control formulation

By considering the aforementioned three control objectives, the
multi-objective predictive control problem of the approach can be
formulated as follows.

minf � obj1; obj2;�obj3g
s:t: the RVM model in Eq: ð22Þ and�
umin � uðkþ hjkÞ � umax
Dumin � Duðkþ hjkÞ � Dumax

h ¼ 0;…;H � 1:

(26)

where umin and umax are respectively the minimum and maximum
values of the control inputs, Dumin and Dumax are respectively the
minimum and maximum values of the variations of the control
inputs.

As shown in Eq. (26), the predictive control is designed to
maximize the wind farm production and reliability while mini-
mizing the thrust loads. However, it is not easy to find the solutions
that satisfy Eq. (26) since the control objective functions are not
analytically known a priori. Therefore, by considering the con-
flicting objectives and the data driven RVM wind farm model,
meta-heuristic evolutionary algorithms are designed to tackle this
control problem. Unlike traditional optimization techniques based
on explicit and rigorous mathematical representations and initial
values, evolutionary algorithms are model-free and data-driven
approaches which are able to find global optimal solutions [29].
By treating the optimization model in Eq. (26) as a black-box
problem and obtaining objective variable feedback from the opti-
mization model, the evolutionary algorithms can provide a set of
compromised and alternative Pareto front solutions that trade off
the objectives [30]. By using ranking and selection in the popula-
tion of the Pareto-based techniques, the non-dominated, non-
inferior or Pareto-optimal solutions can be generated directly by
the evolutionary algorithms.

Then, the optimal solution can be obtained from the Pareto front
solutions based on the meta-heuristic evolutionary optimizations.
The optimal solution can be chosen as8>>>>>>>>>>><>>>>>>>>>>>:

u*ðkÞ ¼ argmax
�
obj1� obj3

obj2

�

u*ðkÞ ¼

2666664
u*ðkjkÞ
u*ðkþ 1jkÞ
«

u*ðkþ H � 1jkÞ

3777775
(27)

where u*ðkÞ denotes the optimal solution.
As shown in Eq. (27), the optimal solution is chosen from the

Pareto set in order to maximize obj1, obj2 and simultaneously
minimize the obj3. The first element of the optimal solution u*ðkjkÞ
is applied to the wind farm to achieve the control objectives at the
time step k.

4.3. The evolutionary algorithms for control solution

In order to solve the aforementioned predictive control prob-
lem, five typical state of the art meta-heuristic evolutionary algo-
rithms are tested and compared to find the optimal control settings
for each wind turbine within the wind farm. They are respectively
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the third evolution step of generalized differential evolution
(GDE3), the multi-objective evolutionary algorithm based on
decomposition (MOEA/D), the multi-objective particle swarm
optimization (MOPSO), the multi-objective grasshopper optimiza-
tion algorithm (MOGOA), and the non-dominated sorting genetic
algorithm III (NSGA-III). These algorithms are generally inspired by
reactions, biological activities and communication mechanisms in
naturewithout relying on the derivations of a problem and gradient
descent to find the global optimum.

The above five state of the art meta-heuristic evolutionary al-
gorithms are selected because they are popular, flexible, multidi-
mensional, and multi-stage parallel approaches, which have
gradient-free and local optima avoidance mechanisms. Examples
of other recent multi-objective optimization algorithms include
[47e61]. There is no need to calculate derivative of the search space
when using these algorithms. They only need the input and output
information, which makes them highly flexible and suitable for
solving the data-driven predictive control problem for wind farm.
By using these five algorithms to solve the wind farm predictive
control problem in section 4.2 and comparing their performances
simultaneously, this work aims to find and select the a suitable
algorithm with the highest computational efficiency and accuracy
so that it can be employed to solve the data-driven wind farm
control problems in real world applications.

These five meta-heuristics algorithms belong to the family of
stochastic optimization techniques and benefit from random op-
erators, which are used to avoid local optima solutions. This
mechanism ensures that the global optima solutions can be readily
and accurately found by using the algorithms in finite time. In
addition, by using the five meta-heuristics algorithms, the handling
of the box constraints in Eq. (26) can be automatically achieved by
only creating feasible solutions within the search space limited by
the box constraints. The solutions that violate the constrained
search space are infeasible and will not be adopted. This advantage
can guarantee that the set of constraints (the box constraints on
control input variables u) in Eq. (26) are well handled by using
these algorithms.

4.3.1. GDE3
GDE3 is an extension of traditional Differential Evolution (DE)

for constrained multi-objective optimization using the Pareto
approach [31]. In GDE3, non-dominated sorting with pruning of
non-dominated solutions and a growing population are used to
decrease the population size at the end of each generation, which
makes the method more stable and improves the obtained di-
versity. The selection rule of the basic DE is modified in GDE3 such
that the old vector in the next generation is replaced by the trial
vector that weakly dominates the old vector in constraint violation
space. There are no mechanism or sorting of non-dominated vec-
tors in GDE3 for maintaining the extent and distribution of the
solution. The number of needed function evaluations is reduced by
the constraint handling method in GDE3 and the optimal solutions
are found based on the crowdedness. We refer [31] for more details
about GDE3.

4.3.2. MOEA/D
MOEA/D is a generic, simple yet efficient multi-objective opti-

mization approach based on decomposition. In MOEA/D, the multi-
objective optimization problem is explicitly decomposed into a
number of scalar optimization sub-problems which are solved
simultaneously by evolving a population of solutions [32]. Each
sub-problem is optimized by using the current information from its
neighboring sub-problems and the neighborhood relations of the
sub-problems are defined by using the distances between their
aggregation coefficient vectors. The issues of diversity maintenance
and fitness assignment encountered in non-decomposition opti-
mization approaches become easier to handle in the MOEA/D due
to the optimization of scalar problems. The MOEA/D uses a small
population to produce a small number of very evenly distributed
solutions and thus has relatively low computational complexity at
each generation. It is very natural to incorporate the scalar opti-
mization methods and objective normalization techniques into
MOEA/D for coping with disparately scaled objectives. We refer
[32] for more details.

4.3.3. MOPSO
The particle swarm optimization (PSO) is a global meta-

heuristic approach inspired by the choreography of a bird flock
and is designed based on swarm intelligence. The PSO needs fewer
parameters and is easy to implement as compared with the other
meta-heuristics algorithms. Due to the high speed of convergence
of the algorithm in single-objective optimization, the PSO has been
extended to deal with multi-objective optimization problems,
called MOPSO.

In this paper, MOPSO [33] is used to strengthen the optimization
ability in multi-objective wind farm predictive control. The algo-
rithm improves the exploratory capabilities of PSO by introducing a
range-varying mutation operator and adding a constraint-handling
mechanism, which then considerably improves the exploratory
capabilities of the original algorithm in Ref. [34].

In addition, an external repository is used to keep a historical
record of the non-dominated particles with respect to the used
repository. The external repository mainly consists of an archive
controller and an adaptive grid. The archive controller is used to
decide whether a certain particle solution should be added to the
archive or not while the grid is used to produce well-distributed
Pareto fronts. A prominent merit of the above MOPSO approach is
the exceptionally low computational requirement and fast
convergence speed, which makes it suitable for solving the above
wind farm control problem.

4.3.4. MOGOA
MOGOA is inspired from the navigation of grass hopper swarms

in nature and is used to find the set of best non-dominated solu-
tions by simulating the swarming behavior of grasshoppers [35]. An
individual grasshopper is modelled from the aspects of attraction
force, repulsion force, and comfort zone. The position of the
grasshoppers represents a possible solution of the optimization
problem and mainly includes three components: social interaction,
impact of gravitational force, and wind advection [36,37].

The evolution of the movement of grasshopper position in (5)
leads to the projection of Pareto optimal solutions in the search
space, which are then stored in a Pareto optimal front set. In order
to form the set, a special adaptive mechanism called roulette wheel
is utilized to select the target that leads to the grasshoppers to-
wards the Pareto optimal front set. In case of premature conver-
gence, the solutions with crowded neighborhood are deliberately
removed to reduce the crowded regions and add new solutions in
the less populated regions. The MOGOA algorithm can be generally
implemented by using the “unified framework” by Padhye et al.
[38,39].

The MOGOA algorithm has advantages in smoothly balancing
exploration and exploitation with very fast convergence speed.
These characteristics make the MOGOA algorithm appropriate to
deal with the multi-objective predictive control of the wind farm
with a large amount of distributed wind turbines.

4.3.5. NSGA-III
The newly developed third version of the non-dominated sort-

ing genetic algorithm (NSGA-III) is extended from the well-known
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NSGA-II by Jan and Deb [40,41]. The NSGA-III is specially designed
to deal with multi-objective optimization problem by using a
reference point approach and can obtain a uniform distribution of
Pareto solutions with relatively low computation complexity.

Compared with NSGA-II, NSGA-III has significant changes in the
selection operator and population diversity, maintained by sup-
plying and adaptively updating a number of well-spread reference
points [42]. In NSGA-III, the non-domination level is selected to
construct a new population from the combined parent and
offspring population, thereby enabling the preservation of elite
members of the parent population. Then, the combined population
is sorted according to different non-domination levels and the so-
lutions that will maximize the diversity of the combined popula-
tion are chosen. Different from NSGA-II that uses a niche-
preservation operator to calculate the crowding distance for
every last level member [43], the solutions of NSGA-III have larger
crowding distances and the crowding distance operator is
improved. In NSGA-III, the diversity in the solutions is ensured by a
predefined set of reference points that can either be predefined in a
structured manner or supplied preferentially by the user. The ideal
solution is determined by identifying the minimum value of each
objective function. NSGA-III adaptively maintains a diversity in the
search space spanned by the population members since the
extreme points are used in the normalization procedure and the
hyper-plane creation from the start.

5. Results and discussions

In this section, extensive computational experiments of yaw
angle control are conducted by using a novel internal parametric
model for wake effects called the FLORIS. Here the simulation setup
comprises of 4 � 5 MW wind turbines as shown in Fig. 2. A few
different test cases have been employed to evaluate the perfor-
mances of the proposed control method under different opera-
tional scenarios including different wind speeds and directions.
Consequently, comparative validations are conducted by
comparing the proposed control approach with a conventional
single-objective differential evolution (DE) algorithm for maxi-
mizing the wind farm power capture under the same operational
conditions.

5.1. Description of the data set and preprocessing

The data set for training and testing the RVM wind farm model
Fig. 2. The configuration of the wind farm in FLORIS. The inflow wind comes from the
left.
in Fig. 2 was provided by using the FLORIS which implements a 3
dimensional version of the Jensen model, the curl model, and the
Gaussian wake model [44,45]. The input and output data samples
are respectively the yaw angles of the four wind turbines, and the
averaged power and thrust force of the wind farm as illustrated in
Eq. (10). The inflow wind speeds and directions have substantial
effects on the wind farm behaviors and therefore 20 different
operation regimes are generated. The 10 different wind speed cases
are generated by varying the inflowwind speed from 5m/s to 16m/
s under the constant wind direction of 270� while the 10 different
wind direction cases are generated by varying the inflow wind
direction from 180� to 360� under the constant and rated wind
speed of 11.5 m/s. The yaw angle control inputs are randomly
generated within the range of �20� and 20� for the 20 different
scenarios. The generated data are also contaminated with random
noise to further test the robustness of the RVM model. The whole
dataset contains 1.6 � 105 data samples and is divided into training
and testing subsets. The training subset has 1.2 � 105 data samples
and the testing subset contains 0.8 � 105 data samples such that a
proper division of the dataset for training and testing is retained to
avoid overfitting.

Then, the RVM wind farm models were trained based on the
above training sample dataset to represent control oriented wind
farmmodels. They include an averaged power output model and an
averaged thrust force model while the control inputs are wind
turbine yaw angle settings of the four wind turbines. The regression
functions of the RVM are used in these models and the radial basis
function is used as the kernel function. For the wind farm reliability
model in section 2.2, the nominal failure rate or baseline failure rate
is set as 0.15.

The following metrics are used to measure the accuracy of the
trained RVM models.

The mean absolute percentage error (MAPE)

MAPEðyiÞ¼
1
M

XM
i¼1





yi � byiyi





� 100% (28)

The root mean square error (RMSE)

RMSEðyiÞ¼
 
1
M

XM
i¼1

jyi � byij2
!1=2

(29)

where yi is the real value, ŷi is the predicted value andM is the total
number of data samples.

The five typical evolutionary algorithms are implemented based
on the RVM models in the proposed predictive control. The pa-
rameters of all the five algorithms are carefully tuned to achieve a
tradeoff between control effectiveness and computational
complexity.

The parameters of the five meta-heuristic algorithms for the
specific wind farm control problem can be tuned by using the
design of experiments as a tool to define a parameter search space
in which a reasonable wide range of the parameters to be tuned is
first defined. Then, by evaluating the behaviors of the algorithms
with respect to different settings of the parameters within the
range, the parameter settings that lead to the better performances
of the algorithms are selected and the range is narrowed accord-
ingly. Based on the results and by conducting the design of exper-
iments repeatedly, the suitable parameters can be identified. The
interested readers can refer to Ref. [46] for more details about more
fine tuning of the parameters.

The parameter settings of the algorithms are listed as follows:



Fig. 3. The RVM modelling results of the averaged wind farm power.

Fig. 4. The RVM modelling results of the averaged wind farm thrust.
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(a) GDE3. The population size and maximum number of gener-
ations are all set as 200.

(b) MOEA/D. The population size and maximum number of
generations are all set as 200. The normal boundary weights
are generated by using the weight generator. The number of
outer divisions is set as 12.

(c) MOPSO. The population size, the repository size and
maximum number of generations are all set as 200. The
inertia weight is set as 0.4. The individual confidence factor
and the swarm confidence factor are both set as 2. The
number of grids in each dimension is set as 20, the maximum
velocity in percentage is set as 5 and the uniform mutation
percentage is set as 0.5.

(d) MOGOA. The population size is set as 200, the maximum
number of iterations is set as 200 and the maximum archive
size is set as 100.

(e) NSGA-III. The number of division is set as 10, the maximum
number of iterations is set as 200 and the population size is
set as 200. The crossover and mutation percentages are both
set as 0.5, and the mutation rate is set as 0.02.
5.2. The RVM modelling performances

The RVM modelling results of the wind farm power and thrust
are shown in Figs. 3 and 4, respectively. As shown in Fig. 3, most of
the predicted power points are located around the exact line (the
dotted light green line) while only a small portion of the predictions
have some deviations from the exact line. The MAPE and RMSE of
the wind farm power modelling are calculated based on Eqs. (28)
and (29) as 2.643% and 0.093, which means that the relative ac-
curacy of the RVM model is around 97.35% (100%-MAPE).

As illustrated in Fig. 4, the predicted wind farm thrust points
from the RVM model are almost aligned with the exact line (the
dashed light green line) while only very few points have some
deviations from the exact line. The MAPE and RMSE of the RVM
modelling of the wind farm thrust are 2.385% and 0.0134 respec-
tively, which indicates that the RVM modelling accuracy is more
than 97% and the trained RVM model can be readily used to
construct the machine learning model for the wind farm.



Fig. 5. The wind farm power generations under different wind speeds.

Fig. 6. The wind farm thrust generations under different wind speeds.

Fig. 7. The wind farm reliability under different wind speeds.
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Fig. 8. (a) The yaw angle variations of the turbine 1 under different wind speeds. (b) The yaw angle variations of the turbine 2 under different wind speeds. (c) The yaw angle
variations of the turbine 3 under different wind speeds. (d) The yaw angle variations of the turbine 4 under different wind speeds.
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5.3. The multi-objective predictive control performances

Based on the RVM models for wind farm power and thrust
predictions, the proposed multi-objective predictive control has
been designed and implemented. The results of the proposed
control are presented in this section in comparisons with a con-
ventional predictive control method based on a single-objective DE
algorithmwhich only maximizes the wind farm power generation.

5.3.1. The control performances under different wind speeds
The comparisons of the two control methods under varying

wind speeds from 6 m/s to 15 m/s and the constant wind direction
of 270� are shown in Figs. 5e7. As shown in Fig. 5, the wind farm
power can be maintained at almost the same level with both
control methods and the maximum reduction of 11% occurs at
15 m/s when using the proposed control method. It’s also noted
that the wind farm thrust load can be obviously reduced by using
the proposed control approach compared to the conventional
control method and the maximum reduction of 21.9% occurs at
13 m/s as shown in Fig. 6. The overall trend of the wind farm reli-
ability is improved by using the proposed control approach and the
largest improvement of 1.6866% is achieved as shown in Fig. 7.
Therefore, the proposed control approach has obvious advantages
in maintaining relatively same level of wind farm power produc-
tion, reducing thrust loads and improving wind farm reliability in
comparison with the conventional control approach.

As shown in Fig. 8, the yaw angle variations of the four turbines
with the proposed control are generally more moderate than that
with the conventional control. This result can be attributed to the
third objective function in improving wind farm reliability by
avoiding too aggressive yaw angle control inputs. The yaw angle
control inputs are actually determined based on the trade-off be-
tween the three objectives in the proposed control whereas the
conventional control determines the yaw angles only based on the



Fig. 8. (continued).
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wind farm power generation optimization.

5.3.2. The control performances under different wind directions
Figs. 9e11 below show the results of the two control methods

under the same wind speed of 11.5 m/s but different wind di-
rections varying from 180� to 270�. As shown in Fig. 9, the wind
farm power with the proposed control method can be kept close to
that with the conventional control method, and the maximum
reduction does not exceed 11% while the wind farm thrust load is
clearly reduced by using the proposed method in comparison with
the conventional method and the maximum reduction is around
20%. The wind farm reliability is also clearly improved by around
1.7% and maintained around 98% by using the proposed control
than that using the conventional control method. These results are
highly consistent with those under the varying wind speed con-
ditions and demonstrate that the proposed control method is able
to provide very competitive results in terms of the trade-off
between the wind power generation, reliability improvement, and
mechanical load reduction, in comparison with the conventional
control.

The comparisons of the yaw angle control inputs of the two
control methods are presented in Fig. 12. As shown in this figure,
the trend of the yaw angle inputs of the four turbines under varying
wind directions also agree well with those under varying wind
speeds in Fig. 8. The yaw angle inputs from the proposed control
method vary more smoothly than that from the conventional
control method. The results are obtained by considering the third
objective of improving wind farm reliability and reducing more
aggressive yaw angle inputs since wind farm reliability will be
highly deteriorated by the aggressive use of the yaw mechanisms.

5.3.3. Performances of the five evolutionary algorithms
The five evolutionary algorithms employed in this paper can all

generate consistent distribution of the Pareto front solutions of the



Fig. 9. The wind farm power generations under different wind directions.

Fig. 10. The wind farm thrust generations under different wind directions.

Fig. 11. The wind farm reliability under different wind directions.



Fig. 12. (a) The yaw angle variations of the turbine 1 under different wind directions. (b) The yaw angle variations of the turbine 2 under different wind directions. (c) The yaw angle
variations of the turbine 3 under different wind directions. (d) The yaw angle variations of the turbine 4 under different wind directions.
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optimization problem in Eq. (26) (Fig. 15) and have no obvious
differences in statistical performance measures. The main perfor-
mance difference among them is the computational load that is the
key in determining the performance of the proposed control
method.

The computational load or the used CPU times of the five
evolutionary algorithms have been calculated at each time step. As
shown in Figs. 13 and 14, GDE3 needs the longest CPU time of
around 20s or more to achieve the proposed control and the NSGA-
III needs around 5s to accomplish the optimization at one time step.
On the other hand, the CPU times of MOEA/D and MOGOA are both
around 1s while MOPSO can achieve the predictive control in less
than 1s in general. Therefore, GDE3 has the largest computational
load, and NSGA-III, MOEA/D and MOGOA have intermediate
computational loads while MOPSO is much more computationally
efficient. Considering that the sampling time interval of the wind
farm control is around 1~2s in practice, it is not recommended to
use GDE3 or NSGA-III in the predictive control while the MOPSO is
readily applicable for the proposed predictive control.

Fig. 15 shows the typical Pareto front of the five algorithms
under the wind speed of 6 m/s and wind direction of 270�. As the
figure shows, the five evolutionary algorithms can all generate
consistent distribution of the Pareto front solutions of the optimi-
zation problem in Eq. (26). The solutions from GDE3, MOEA/D,
MOPSO and NSGA-III distribute continuously and uniformly along
the Pareto frontier while the solutions from MOGOA are scattered.



Fig. 12. (continued).
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MOPSO offers much better and continuous solutions than other
algorithms. The optimal solution can be obtained from the Pareto
front by using Eq. (27) and the optimal solutions of the five algo-
rithms converge to the same point that is the selected solution of
the control problem (see Fig. 15). Actually, the five evolutionary
algorithms offer more options in choosing or regulating yaw angle
settings for a wind farm for maximizing wind farm power pro-
duction, improving farm reliability and simultaneously minimizing
farm thrust loads than the conventional single-objective predictive
control.

Fig. 16 illustrates the evolutions of the three objectives during
the computing step by using the MOPSO algorithm. As the figure
shows, the objective functions 1 and 3 both increase steadily and
converge to the relatively stable values during the computing steps.
The objective function 2 also decreases steadily to a relatively stable
value during the computing steps. The results indicate that the
MOPSO algorithm is capable of finding the converged optimal so-
lutions of Eq. (26) within small time interval of around 0.5 s such
that the reliability aware multi-objective wind farm control task is
readily fulfilled.
6. Conclusion

This paper has developed the reliability aware multi-objective
predictive control approach for a wind farm based on machine
learning and heuristic optimizations. The RVM wind farm model
has been built based on large sample data from FLORIS, and the
actuator health informed wind farm reliability model has also been
constructed. Based on the trained RVM model, a multi-objective
predictive control approach has been designed and implemented



Fig. 13. The CPU times of the five algorithms under different wind speeds at one time step.

Fig. 14. The CPU times of the five algorithms under different wind directions at one time step.

Fig. 15. The Pareto front of the five algorithms under the wind speed of 6 m/s and wind direction of 270� .



Fig. 16. The trends of the three objective functions in the proposed control under the wind speed of 6 m/s and wind direction of 270� .
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to maximize the wind farm power generation and reliability as well
as simultaneously minimizing the wind farm thrust loads by
determining the coordinated yaw angle control actions for each
wind turbine. It allows a trade-off between all these three objec-
tives. The five typical state of the art meta-heuristic evolutionary
algorithms have been tested and compared to find the optimal
control settings for each wind turbine within the wind farm.
Extensive computational experiments have been conducted by
using the FLORIS, and the proposed approaches have been validated
by using different sets of large data samples under different wind
speeds and directions in comparisonwith a conventional predictive
control algorithm. The validation results have demonstrated that
the developed control is able to maintain the wind farm power
close to that by using the conventional control method, while the
wind farm thrust load is clearly reduced by using the proposed
method in comparison with the conventional method (around
20%). The wind farm reliability index is also clearly improved by
around 1.7% and maintained around 98% by using the proposed
control than that from the conventional control method. In addi-
tion, the MOPSO algorithm used in the proposed approach is quite
computationally efficient and has high potential in practical
applications.
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