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a b s t r a c t

This paper explores the big data driven multi-objective predictions for offshore wind farm based on
machine learning. A data-driven prediction framework is proposed to predict the wind farm power
output and structural fatigue. Unlike the existing methods that are normally based on analytical models,
mainly focus on single objective and ignore the control contributions, the proposed framework uses the
turbine control inputs, inflow wind velocity and directions as the predictor variables. It is constructed by
training five typical machine learning approaches: the general regression neural network (GRNN),
random forest (RF), support vector machine (SVM), gradient boosting regression (GBR) and recurrent
neural network (RNN). The assessment of these approaches is based on the FLOw Redirection and In-
duction in Steady State (FLORIS) under 6 different scenarios. The test results in different cases are highly
consistent with each other and validate that very minor accuracy differences exist among these ap-
proaches and they all can achieve the relative accuracy of around 99% or more, which is sufficiently
accurate for practical applications. The RNN and SVM exhibit the best accuracy, and particularly the RNN
has the best accuracy in thrust predictions. The results also demonstrate that the GRNN has the best
computational efficiency.

© 2019 Published by Elsevier Ltd.
1. Introduction

The offshore wind energy has received a significant boost in
recent years. Academia and leading companies are making
continuous efforts in reducing its costs to make it more competitive
with the traditional power generation [1]. However, the offshore
wind farm heavily relies upon atmospheric conditions, marine
hydrodynamics, and local weather events such as storm events.
Hence, its performance is in general more sensitive to environ-
mental factors than its onshore counterpart [2]. This is especially
true during extreme atmospheric events, such as typhoons and
storm surge. These effects bring additional challenges (such as
significant uncertainty and intermittency) to wind farm operations,
and may highly compromise their long-term sustainability. Mini-
mizing these impacts requires fundamental research and im-
provements in predictions of power generation and loads. This can
enhance wind farm operations and thus reduce cost. However,
since the offshore wind farm is an aggregation of different types of
xiaowei.zhao@warwick.ac.uk
wind turbines and involves complex turbine-wake interactions, it is
very challenging to derive an accurate analytical wind farm model
for output predictions. On the other side, the offshore wind energy
is a data-rich industry and thus big data drivenmodels may provide
a better solution.

As a promising solution to the data driven modeling and pre-
dictions, artificial intelligence like machine learning has the po-
tential to highly boost the accuracy and efficiency for wind farm
predictions. This does not need any explicit information from
mathematical model of the farm operational process [2]. However,
there is very few work in this area in the literature while almost all
of them are based on analytical farm models. In Ref. [3], combined
wind farm power prediction models were built based on wind
speed prediction models and power curve models using nonlinear
autoregressive models, parametric and nonparametric models. In
Ref. [4], a simulation post-processing method for evaluating and
predicting the impact of wind direction uncertainty on wake
modeling of the Horns Rev offshore wind farm was introduced.
However, the method required accurate wake predictions for nar-
row wind direction sectors. In Ref. [5], four time series models for
different prediction horizons of a wind farm were built. However,
the time series prediction of wind farm output was based on known
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historical events at successive time intervals. The wind farm power
cannot be accurately determined when control inputs and wind
speed change. In Ref. [6], short-term forecast of wind farm gener-
ation was investigated by applying graph-learning based spatio-
temporal analysis and finite-state Markov chains. In Ref. [7], wind
farm prediction models were built using weather forecasting data
and predicted wind speed data while no on- and off-site observed
data were used in the prediction models. In Ref. [8], two neural
network-based methods for direct and rapid construction of pre-
diction intervals for short-term wind farm power forecasting were
investigated. The bootstrap and lower upper bound estimation
methods were used to quantify uncertainties associated with
forecasts. In Ref. [9], a wind farm power output prediction model
was proposed based on nonlinear time series. In Ref. [10], the
annual power production capacity and utilization rates of an
offshore wind farm were estimated roughly based on meteoro-
logical data. The paper [11] focused on wind turbine power pre-
dictions and the papers [12,13] predicted wind speed, which are
significantly distinct from wind farm prediction.

In addition, most of the abovewind farm predictions used single
objective prediction such as wind farm power that cannot predict a
set of different objectives and hence may not provide enough in-
sights into the nature of the offshore wind farm outputs. Further-
more, most of the above mentioned predictions are designed by
using the historical data and probability statistics approaches while
the control inputs for wind farms are undesirably ignored, which is
not realistic since control signals are crucial in dominating the
outputs of wind farms.

Therefore, the present paper aims to leverage the newest de-
velopments in big data and machine learning to create a new
generation of predicting capabilities of offshore wind farms that
support the design and operation of more economical offshore
wind farms. A unified multi-objective prediction framework for
predicting the wind farm power output and structural fatigue is
formulated. In particular, the averaged wind farm power output
and the equivalent thrust of wind turbine are used as the response
variables while the free stream wind velocity, the vector of wind
directions, and the vectors of the generator torque, the yaw offset
angle, blade pitch angle and tilt angle, and the turbine character-
istic parameters (such as the turbine tip speed ratio and rotor
speed), are used as the predictor variables. The prediction frame-
work supports both short and long-term predictions and evalua-
tions of various offshore farms by incorporating the influences of
control settings, turbine characteristics and wind conditions and
hence is significantly different from the conventional wind power
prediction methods.

The wind farm power/thrust prediction models are built with
five different data mining algorithm including the GRNN, the RF,
the SVM, the GBR, and the RNN. Their assessments are conducted
based on the FLORIS. The averaged power and thrust are measured
as thewind farm outputs while the turbine yaw settings are fed into
the model as control inputs. The scenarios include 6 different
inflowwind speeds and directions: the meanwind speeds of 8m/s,
16m/s and 28m/s with 270� wind direction, and the wind di-
rections of 180�, 225� and 315� with 16m/s wind speed. The 28m/s
wind speed scenario is used to represent extreme conditions such
as typhoons.

The main novelty and contributions are listed as follows.

1. A big data-driven multi-objective prediction framework based
on machine learning algorithms is proposed to predict the wind
farm power output and structural fatigue load. The wind farm
prediction models are built with five different data mining al-
gorithms including the GRNN, the RF, the SVM, the GBR, and the
RNN.
2. The algorithms are validated based on the calibrated FLORIS
software.

3. The proposed prediction framework supports both short and
long-term predictions and evaluations of various offshore farms
by incorporating the influences of control settings, turbine
characteristics and wind conditions.

Throughout the paper, ℝ denotes the space of real numbers, ℝn

denotes the n dimensional real space.
2. Multi-objective wind farm prediction framework

The metrics for assessing the efficiency, resilience and reliability
of an offshore wind farm can be typically specified as thewind farm
power output and structural fatigue. The wind farm power pro-
duction is an aggregation of the powers produced by all the wind
turbines in the wind farm, which can be highly influenced by the
wake interactions. For example, the wind turbines operating in the
full wake of other turbines in front of them suffer from significant
power losses. The fatigue loading on a wind farm is the accumu-
lation of mechanical loads in the long and slender structural
components of the wind turbines such as blades, towers and shafts.
The level of structural fatigue is utilized for the assessment of the
reliability and safety factor in offshore wind power integrations.
The turbine thrust, normal and tangential forces on the main tur-
bine components are the main causes to these fatigue loads. On the
other hand, modern wind turbines allow active control inputs to
maximize the wind farm power production while reducing exces-
sive structural fatigue loads. The typical control parameters can be
represented as the turbine blade pitch angles, yaw angles and tilt
angles. These control actions not only influence the power pro-
duction efficiency of the wind farm, but also can lead to significant
reductions of the farm fatigue loading.
2.1. The wind farm model with wake interactions

Considering an offshore wind farm consisting of N wind tur-
bines denoted by the set F¼ {1, 2,…, N}, each wind turbine i2 F is
characterized by its rotor area, the inflow wind speed and a two
dimensional location (xi, yi) relative to a common reference frame
(x, y). Considering two turbines i and j in the wind farm as shown in
Fig. 1, the power generated by the downstream turbine i is
expressed as [14].

PWi ¼
r

2
ðAi cosaiÞCPiðbi; liÞ

0@viðtÞcos
1
3ai cosgi

1A3

(1)

where PWi is the generated power from the turbine i, r is the air
density, Ai is the rotor-swept area of the turbine i, viðtÞ is the
effective wind speed seen by the turbine i, CPi is the power coeffi-
cient of the turbine i, ai, bi, gi and li are respectively the tilt
misalignment angle (Fig. 1), the blade pitch angle, the yaw offset
angle and the tip-speed ratio (TSR) of the turbine i.

Accordingly, the thrust acting on the turbine i can be described
as

TWi ¼
r

2
ðAi cosaiÞCTiðbi; liÞ

0@viðtÞcos
1
2ai cosgi

1A2

(2)

where CTi is the thrust coefficient of the turbine i.
As shown in Eqs. (1) and (2), by considering the wind turbine

rotor to be a circular disc and assuming certain values of the yaw



Fig. 1. The two turbine model example. (a) The wake expansion model of the turbines i and j (top view) (b) The tilt misalignment model of the turbine i (side view). In the Cartesian
reference frame (x, y), the x-axis points downwind along the free stream inflow direction, the y-axis is orthogonal to the x-axis along the crosswind direction, and the z-axis is
orthogonal to the x and y axis, and represents the altitude. The reference frame ðx; yÞ is used to measure and represent the free stream inflow wind direction.
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offset angle, power and thrust coefficients, the wind turbine power
and thrust respond to the tilt angle ai with a cos2 relation which is
partly due to a cosine reduction in wind speed and partly due to a
cosine reduction in the projected swept area. In addition, the power
and thrust coefficients are two important characteristic parameters
of the wind turbine, and are directly related to the TSR. The power
coefficient CPi is described by Ref. [15].8>>>>>>>>>>>><>>>>>>>>>>>>:

li ¼
uiRi
viðtÞ

;

CPiðbi; liÞ ¼ c1

�
c2
li

� c3bi � c4

��c5
li þ c6li;

li ¼
1

li þ 0:08bi
� 0:035

b3i þ 1
:

(3)

where Ri is the rotor radius, ui is the turbine rotor speed, and
c1¼0.5176, c2¼116, c3¼ 0.4, c4¼ 5, c5¼ 21, c6¼ 0.0068 are con-
stant coefficients.

Alternatively, the power and thrust coefficients CPi and CTi can
also be represented as the functions of the axial induction factor
and the yaw offset angle as [15].8<:CPiðaiÞ ¼ 4aiðcosgi � aiÞ2;

CTiðaiÞ ¼ 4aiðcosgi � aiÞ:
(4)

where ai is the axial induction of the turbine i.
By solving the second equation in Eq. (4), one obtains

ai ¼
cosgi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2gi � CTi

p
2

(5)

By substituting Eq. (5) into the first equation of the Eq. (4), one
obtains

CPi ¼
CTi
�
cosgi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2gi � CTi

p �
2

: (6)

As described in Eq. (6), the thrust coefficient CTi is only related to
the yaw offset angle gi and power coefficient CPi that can be
expressed by Eqs. (1) and (3), and therefore is also directly
dependent on the aerodynamic characteristics of the turbine i
including the blade pitch angle, and the turbine operational
characteristics such as the TSR and the rotor speed.
As shown in Fig. 1, the effective wind speed viðtÞ seen by the

turbine i in the wake of the turbine j is represented as [16].

viðtÞ ¼ V∞ cos 4ð1� dviðtÞÞ (7)

where V∞ is the free stream inflowwind speed, and 4 is the angle of
wind direction with respect to the x axis, dviðtÞ is the fractional
velocity deficit which can be given by Ref. [16].

8>>>>>>>><>>>>>>>>:

dvi

0@t

1A ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2F;xj < xi

�
ajcji

�2s
;

cji ¼
 

Dj

Dj þ 2k
�
xi � xj

�!2
Aol
ji

Ai
:

(8)

where k¼ 0.084 denotes a tunable wake expansion coefficient, aj
and Dj are respectively the axial induction factor and rotor diameter
of the turbine j, Aol

ji denotes the overlapping area between the
turbine i and the turbine j, xi and xj are respectively the x-axis co-
ordinates of the turbine i and the turbine j.

As illustrated in Eqs. (1), (2), (7) and (8), the amount of total
wind power production and thrust load of the turbine i is not only
related to its own control inputs and the inflow wind parameters
including the wind speed V∞ and wind direction angle 4, but also is
determined by the operational characteristics of the upstream
turbine j due to the wake interactions. Therefore, under certain
inflow wind speed and wind direction, the wind farm power and
thrust outputs can be jointly determined by the control inputs of all
the wind turbines in the wind farm, and the averaged wind farm
power and thrust can be represented as

8>>>>>>><>>>>>>>:
PF ¼ 1

N

XN
i¼1

PWi

TF ¼ 1
N

XN
i¼1

TWi

(9)

where PF and TF are respectively the averaged wind farm power
output and the averaged wind farm thrust.
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2.2. Formulation of the wind farm prediction problem

As illustrated in the section 2.1, the wind farm power and thrust
outputs are directly dependent on the control inputs of all the wind
turbines, the turbine operational parameters, the inflow wind
speed and direction. Therefore, by representing the input param-
eters of the offshore wind farm as a tuple, it is possible to construct
a wind farm model as follows8>><>>:

y ¼ fðxÞ;
y ¼ ½PF ; TF �;
x ¼ ðV∞;4;a;b;g; lÞ:

(10)

where fðV∞;4;a;b;g;lÞ2ℝ2 is a vector-valued function repre-
senting the mapping from the tuple of admissible parameter set-
tings to the averaged wind farm power and thrust, V∞ 2ℝ;42
ℝ;a2ℝN ;b2ℝN ;g2ℝN ;l2ℝN are input vectors.

However, by observing Eqs. (1)-(10) in section 2.1, it is generally
difficult to explicitly derive an analytical expression for Eq. (10) due
to the core modeling challenges associated with the overlapping
turbine wake interactions which increases levels of turbulence and
shear and hence the complex dynamic loads of the downstream
wind turbines. The wake interactions in a wind farm will become
significant with the increasing number of wind turbines, thereby
lowering the power productions and the reliability of the overall
wind farm. In addition, the amount of the wake interactions de-
pends on the operating point of each wind turbine, which is rather
difficult to parametrize for a largewind farm. Therefore, rather than
deriving a detailed analytical wind farm model with wake in-
teractions, the wind farm can be readily represented by training a
machine learning model based on big sample data of input pa-
rameters V∞;4;a;b;g and l. This model is inherently multi-
objective since the averaged wind farm thrust TF is also used to
represent the fatigue loads of the wind farm.

More specifically, the wake travelling dynamics will induce a
delay in the model and hence the model needs to be extended with
a delay time t to consider the effects of the changes of input control
variables on the entire wind farm outputs. Alternatively, the model
can be employed to predict future farm responses based on the
Fig. 2. The schematic diagram
currently available control inputs. As a consequence, the machine
learning model for Eq. (10) can be represented as yðt þ tÞ ¼
fðV∞ðtÞ; 4ðtÞ; aðtÞ; bðtÞ; gðtÞ; lðtÞÞ, in which the tuple of the input
parameters ðV∞ðtÞ;4ðtÞ;aðtÞ;bðtÞ;gðtÞ;lðtÞÞ are specified as the
predictor variables while the response variables can be specified as
the future averaged values of PFðtþtÞ and TFðtþtÞ since the
number of turbines in a wind farm is a unique constant for the
specific wind farm.
3. The data driven prediction methodology

The data driven machine learning approaches rely on sufficient
data of the predictor and response variables while certain hyper
parameters are optimized by minimizing pre-defined cost func-
tions to attain the desired accuracy during iterations. For building
machine learning systems that are stable, progressive and reliable
for applications in offshore wind farm, five approaches are selected
including the GRNN, the RF, the SVM, the GBR and the RNN. These
approaches include both the standard machine learning methods
such as the RF, SVM and GBR, and the deep learning architectures
including the GRNN and RNN. The deep neural nets involve the
high hierarchical architecture of many hidden layers and conduct
the essentially multi-level non-linear operations through end to
end optimizations [17]. Unlike the standard machine learning ap-
proaches, the deep neural nets also have distinctive attributes of
the high-level more abstracted representation in learning the more
complicated inherent structures.
3.1. The GRNN

The GRNN is built on the kernel regression, Bayes decision and
nonparametric techniques for predicting the joint probability
density function between inputs and outputs [18]. In the GRNN, the
probability density function is assumed as the form of Gaussian
distribution and thus no iterative training procedures are needed as
in standard neural networks. The GRNN features high approxima-
tion accuracy, fast training speed and does not have local minima
problem [19].

As illustrated in Fig. 2, the GRNN for predicting wind farm
of the GRNN architecture.
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outputs are formulated into four layers: input layer, pattern layer
(hidden layer), summation layer, and output layer. The input layer
receives the input signals including wind speed, yaw angles, etc. In
the pattern layer, neurons Gaussian functions to generate outputs
from the input layer are as follows [18].

pi ¼ exp

"
�
�
xT � xTi

�T�
xT � xTi

�
2s2

#
(11)

where pi denotes the output from the ith neuron in the pattern
layer, s denotes a spread parameter.

The summation layer has two types of summations: simple
summation ss and weighted summation sw, each calculates the
summations from the pattern layer as follows [19].8><>:

ss ¼
X
i¼1

pi

sw ¼
X
i¼1

6ipi
(12)

where6i denotes the connecting weight between the pattern layer
and summation layer.

The output layer has two neurons, each corresponding to the
wind farm power and thrust. By feeding the outputs from the
summation layer into the output layer, it is possible to calculate the
GRNN output as [19].

y ¼ ss
sw

(13)

where y denotes the wind farm power or thrust outputs.
3.2. The RF

The RF is an extended and improved bagging method based on
classification and regression trees and is also a non-parametric
classification/regression approach [20]. In the RF, the training
data are divided into an ensemble of multiple independent binary
decision trees by using recursive partitioning and each tree is
trained independently using different bootstrap samples on a
random subset of the training data. For the construction of each
regression tree, the RF randomly selects a random subset of vari-
ables at each node and thus this randomness process allows each
tree to grow independently to its maximum size with continuous
selection of the input variables at each node. Therefore, each tree
acts as a regression function on its own and its accuracy can be
tested based on the out-of-bag error of estimate which evaluates
the relative importance of different evidential features. Approxi-
mately 30% of the new training sample constitutes the out-of-bag
sample while two third sample is utilized for deriving the regres-
sion function.

The final predictions of RF are taken as the average of the re-
sponses from all the individual trees. The RF parameters include the
number of independent variables that are randomly selected in
each node and the maximum number of trees. Unlike neural net-
works, the RF is particularly robust and effective in modelingmulti-
source datasets with high dimensionality. The RF also provides an
assessment of realistic prediction error estimates during the
training process due to the built-in cross validation capability by
using out-of-bag samples, which significantly improve its gener-
alization capability. Another prominent advantage is that the trees
of a RF grow with no pruning, which leads to much lighter
computational burden and makes the RF suitable for real time
implementation.

The implementation procedure of RF for predicting wind farm
outputs can be designed as follows.

(1). Determine the essential RF tuning parameters such as the
number of trees and the maximum iterations.

(2). Randomly select a bootstrap sample with replacement from
the available dataset and evolve each tree using boot-
strapped sample taken from the dataset. Each tree is evolved
to the maximum size without further splits and pruned back.

(3). Repeat step 2 until all the user-defined number of trees are
grown.

(4). Evaluate the prediction error of the grown regression trees
based on out of bag sample and calculate the averaged error.

(5). Obtain the tree outputs for the given inputs such as pitch
angles and yaw angles and obtain the final predictions
including the wind farm power and thrust by averaging the
predictions of all the trees.
3.3. The SVM

The SVM is a popular nonparametric machine learning tool
relying on kernel functions and has great generalization ability in
dealing with complex systems and corrupted data [21]. Unlike the
empirical risk minimization principle used in neural networks, the
structural risk minimization is used in the SVM to find the best
regression hyperplane in a “high dimensional feature space”.
Therefore, the basic principle is to map the low-dimensional space
data input into a high dimensional feature space by constructing a
separating hyperplane with the maximum margin in the feature
space [22]. This nonlinear transformation is accomplished by using
Kernel functions that satisfy the Mercer's condition [23].

Given a set of sample data (xi, yi), i¼ 1, 2, …, n, where n is the
quantity of the sample data, the approximate linear mapping from
the input to output can be formulated based on SVM as follows [21].

byðkÞ¼uT 4ðxÞ þ b (14)

where byðkÞ is the estimated outputs for wind farm power and
thrust, k¼ 1, 2, 4ðxÞ is a nonlinear mapping from the input to the
output, u2ℝm and b2ℝ are respectively the weights and a bias
constant, m is the number of features.

For a given sample data, if there exists an optimal trans-
formation with a hyperplane satisfying [21].8<: yðkÞ ¼ u�T4ðxÞ þ b

jyðkÞ � byðkÞj � ε

(15)

where ε> 0 is a arbitrarily small positive constant, u�2ℝm is the
optimal value of u.

Then, the prediction problem can be transformed into the
following optimization problem [22].

min
1
2
uTuþ 1

2
mkC

Xn
i¼1

x2i

s:t: yðkÞ ¼ uT4ðxÞ þ bþ xi

(16)

where C and xi are respectively a positive box constraint and a
positive slack variable, mk is a weight coefficient.

By using Lagrangian multiplier mi2ℝ, the above optimization
problem in Eq. (16) can be described as [23].
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L¼1
2
uTuþ 1

2
mkC

Xn
i¼1

x2i �
Xn
i¼1

mi

h
uT4ðxÞ þ bþ xi � yiðkÞ

i
x2i

(17)

In order to solve Eq. (17) analytically, the following equations
should be satisfied8>>>>><>>>>>:

vL
vu

¼ 0;
vL
vb

¼ 0;

vL
vxi

¼ 0;
vL
vmi

¼ 0:
0

8>>>><>>>>:
u ¼

Xn
i¼1

mi4ðxiÞ;mi ¼ mkCxi;

Xn
i¼1

mi ¼ 0;uT4ðxÞ þ bþ xi � yiðkÞ ¼ 0:

(18)

The solution to Eq. (18) yields

Xn
i¼1

mi4
TðxiÞ4

�
xj
�þ bþ mi

mkC
¼ yiðkÞ (19)

The above solution in Eq. (19) can also be expressed as follows
[24].8>>><>>>:

Q i;j ¼ 4TðxiÞ4
�
xj
� ¼ K

�
xi; xj

�
;24 b

m

35 ¼ Q�1fT

240
yðkÞ

35; (20)

where Kðxi; xjÞ is a kernel function.

f ¼

266664
0 1 ::: 1
1 Kðx1; x1Þ þ ðmkCÞ�1 ::: Kðx1; xnÞ
::: ::: 1 :::
1 Kðxn; x1Þ ::: Kðxn; xnÞ þ ðmkCÞ�1

377775
(21)

Based on Eqs. (20) and (21), the prediction from the SVM can be
formulated as

yðkÞ¼
Xn
i¼1

miK
�
xi;xj

�þ b (22)

In order to improve the prediction performance, different
custom Kernel functions can be specified such as the radial basis
function or hybrid kernel function that meet the Mercer's condition
[24]. According to the above descriptions, the SVM essentially lo-
cates the hyperplane with a ε-insensitive loss function in Eq. (15)
and thus tolerates errors that are within ε distance of the pre-
dicted values. The SVM is also memory efficient due to the use of
support vectors in the decision function and is thus still effective in
dealing with the cases where the number of features is greater than
the number of samples. Therefore, the SVM is particularly suitable
for predicting the large scale wind farms outputs.
3.4. The GBR

The GBR is a relatively new prediction approach for representing
high order feature interactions based on the combination of both
machine learning and statistical boosting. The GBR is characterized
by regression trees and boosting and can produce a prediction
model in the form of an ensemble of decision trees [25,26]. A large
ensemble of regression trees are grown like a form of recursive
partitioning by randomly selecting a certain amount of training
data without replacement. Recursive splits are employed in the
regression trees to subdivide the predictor space into non-
overlapping regions, thereby identifying regions with most ho-
mogeneous responses to predictors. Unlike the conventional
bagging in the RF, the special mechanism “boosting” applied in GBR
can effectively reduce the variance in bootstrapping samples and
thus can form a low-variance predictor. In boosting, an ensemble of
simple base learners are built and combined in a repeatedly itera-
tive stage-wise process, resulting in distributions that concentrate
on more difficult training cases. In order to prevent overfitting, the
small trees, each with high bias are sequentially added and aver-
aged in the GBR. Therefore, the regression trees are robust to out-
liers in the data and are insensitive to the inclusion of irrelevant
variables [27].

In order to evaluate the prediction results, a loss function is
typically specified, such as a mean squared-error loss function, and
gradient boosting is used to learn these boosted regression trees
based on a learning rate. Themain tuning parameters of the GBR for
optimizing predictive accuracy include the proportion of data that
are drawn without replacement at each iteration, and the number
of trees [28].

By introducing the boosting technique, the stability and accu-
racy of the GBR can be highly improved, giving rise to a single very
strong predictive model. As compared to other methods, the GBR
with hierarchical structure holds several prominent advantages
including high invariance under transformations of the predictors,
high tolerance to outliers, and the capability to handle missing data
and include both continuous and categorical variables [29]. In
addition, the GBR also lends itself to the recovery of the informa-
tional content of leading predicators by capturing even complex
regression nonlinearities in a natural way.

3.5. The RNN

Unlike standard feedforward neural networks, the RNN has
feedback connections or a “recurrent” structure and performs the
current prediction using not only the input data, but also the pre-
vious outputs. The gradient backpropagation through time (BPTT)
algorithm is implemented in the model training of RNN to compute
the gradient descent after each iteration [30]. However, during the
BPTT of many time steps, the RNN suffers from the problem of
vanishing or exploding gradients whose values become extremely
small or large. In order to tackle this issue, the popular long-short
term memory (LSTM) cells can be used for deep RNN in learning
long-term dependencies. The LSTM cell is a specifically designed
gated memory unit of logic with internal mechanisms called gates
that can regulate the flow of information.

As shown in Fig. 3, a typical LSTM cell consists of three gates that
manage the contents of the memory, the input gate, the output gate
and the forget gate. The three gates are simple logistic functions of
weighted sums, where the weights are trained by using the BPTT
method. The input gate and the forget gate manage the long-term
memory cell state. The output gate generates the output vector or
hidden state, which is the memory focused for use. The forget gate
is used to control the time dependence and effects of previous in-
puts and can determine which states are remembered or forgotten.

Considering the representation of two repeating LSTM cells for a
RNN as pictured in Fig. 3, the time or sequence-dependent data
flow from left-to-right, with the current input xt and the previous
cell output ht�1 concatenated together and entering the right “data
rail”.

As shown in Fig. 3, the forget gate decides what is relevant to
keep from prior steps by passing the information of the current
input xt and the previous cell output ht�1 through the sigmoid
function. Therefore, the current hidden output is updated as fol-
lows [31].



Fig. 3. The architecture of two repeating LSTM cells containing four interacting layers.
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ft ¼ sigmoid
�
Wf ,½ht�1; xt � þ bf

�
(23)

where ft is the output from the forget gate, the square bracket [, ]
denotes the vector concatenation, Wf and bf denote the weight and
bias vectors for the forget gate, respectively.

The input gate decides what information is relevant to add from
the current input xt and the previous cell output ht�1. The current
internal state is then updated from the outputs from the input gate
and forget gate [31]. Hence,

8>><>>:
it ¼ sigmoidðWi,½ht�1; xt � þ biÞ;
~Ct ¼ tanhðWc,½ht�1; xt � þ bcÞ;
Ct ¼ ft*Ct�1 þ it*~Ct :

(24)

where it is the output from the input gate, Ct, Ct-1 and ~Ct are internal
state variables, Wi and Wc are respectively the weight vectors for
the input gate and internal state, bi and bc are respectively the
biases for the input gate and internal state, tanh () denotes the
hyperbolic tangent function, and * denotes the pointwise
multiplication.

The output gate determines what the next hidden state should
be. In the output gate, the squashed state is multiplied by the
output sigmoid gating function to determine which values of the
state are output from the cell. The output gate takes the following
form [31].

8<:Ot ¼ sigmoidðWo,½ht�1; xt � þ boÞ;
ht ¼ Ot*tanhðCtÞ: (25)

Then, the next LSTM cell follows the similar procedure, and
updates the cell state and output to new values as a function of the
values of the hidden state and the output at the current time step
and the value of the cell input at the next time step.

The above-mentioned sigmoid function squishes values be-
tween 0 and 1, and the tanh function squishes values between �1
and 1. Therefore,

8>>>>><>>>>>:
tanhðxÞ ¼ expðxÞ � expð � xÞ

expðxÞ þ expð � xÞ;

sigmoidðxÞ ¼ expðxÞ
expðxÞ þ 1

:

(26)
4. Case studies and validations

The assessment of the above-mentioned data driven machine
learning approaches has been conducted based on a wind farm
simulation platform named FLORIS that was developed by the
National Renewable Energy Laboratory (NREL) and the Delft Uni-
versity of Technology [32]. The FLORIS model is a calibrated data-
driven parametric tool for performing real-time optimizations to
improve wind farm performance. This tool implements a 3D
version of the Jensen and Gaussian wake model, and is designed to
provide a computationally inexpensive and controls-oriented
model of the steady-state wake characteristics in a wind farm. By
combining the Jensen model [33], wind inflow properties (wind
speed and direction), and a model for wake deflection through
turbine yaw settings, the FLORIS is programmed using Python
language to better model situations with wake deflection, partial
wake overlap and wake position offsets caused by rotor rotational
effects.

The turbine model employed in the FLORIS is the NREL 5MW
turbine and the wind farm comprised of 4� 5MW wind turbines
was used for data acquisition [34]. The turbine model consists of
power and thrust coefficients while the wind field modeling con-
siders turbulences, wake effects, inflow wind speeds and di-
rections. For the purpose of easy demonstration, the averaged
power and thrust are measured as the wind farm outputs, and the
turbine yaw angle settings are fed into the model as control inputs
while other input parameters including the blade pitch angle, the
tilt angle, and the turbine operational characteristics such as the
TSR and the rotor speed are kept constant.

Hence, the corresponding farm power and thrust outputs in
conjunction with those yaw angle settings are employed as the
basis for training and testing the machine learning approaches
presented in section 3. Different scenarios with different wind
inflow properties are used to assess the prediction accuracy of the
machine learning approaches. All case studies were carried out
using Python 3.6.8 on an Intel Core i7-7700 OptiPlex 7050 Dell
desktop with 3.60 GHz 8 CPUs and 32, 768MB RAM.
4.1. The prediction settings and data preprocessing

The sequences of input and output data of the wind farm were
generated by using the FLORIS, consisting of a training and a vali-
dation dataset. The input yaw angle settings for the data genera-
tions in the FLORIS were randomly generated as a sample sequence
consisting of four elements between �35� and 35�, and each yaw
angle is fully distinguished from the previous yaw angle settings.
The total number of yaw angle settings are respectively 360, 000
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and 36, 000 for the training and validation datasets. Typical oper-
ating scenarios and patterns of the wind farm are extracted to
facilitate the wind farm predictions. The scenarios include 6
different inflowwind speeds and directions: the meanwind speeds
of 8m/s, 16m/s and 28m/s with 270� wind direction, and the wind
directions of 180�, 225� and 315� with 16m/s inflow wind speed.
All the scenarios are set with the turbulence intensity of 6% in order
to evaluate the prediction performances of these approaches under
both low and high turbulent wind conditions. Note that the wind
directions in all the scenarios are set by following the FLORIS
convention and maybe different from the angle of wind direction 4

in Fig. 1
The training and validation of the machine learning approaches

based on the FLORIS data were conducted by using a number of
fundamental Python packages such as the NumPy and the SciPy,
and popular machine learning libraries including the Tensorflow,
the Scikit-learn, the Theano, and the Keras. The NumPy library is
used to perform high-level mathematical functions on multi-
dimensional arrays and matrices [35], and the SciPy library is
used for scientific computing and data processing [36]. The ma-
chine learning framework of Tensorflow is an open-source software
library for deep learning neural networks and dataflow program-
ming across a wide range of tasks [37]. The Scikit-learn library
features various classification, regression and clustering algorithms
including support vector machines [38]. The Theano library fea-
tures tight integration with NumPy, efficient symbolic differentia-
tion, speed and stability optimizations and has been used for large-
scale computationally intensive scientific investigations [39]. The
Keras library is used for developing and evaluating deep learning
models with either the Tensorflow or Theano backend [40]. By
wrapping the efficient numerical computation libraries from the
Theano and Tensorflow, the Keras is a powerful Python library for
defining and training neural network models in a few short lines of
codes.

The settings for the five machine learning approaches are listed
as follows.

GRNN. The GRNN was constructed in Python by using the Ten-
sorflow and the NumPy. The GRNN has a deep learning architecture
with three hidden layers (or pattern layers as shown in Fig. 2). The
numbers of neurons in the three hidden layers are set respectively
as 512, 256 and 128. For fitting the GRNN, the batch size and epochs
are set respectively as 100 and 50.

RF. The RF algorithm was constructed by using Random-
ForestRegressor imported from the sklearn.ensemble in the Scikit-
learn library. The maximum depth, the number of estimators and
the random state are set as 30, 100 and 2, respectively for training
the RF.

SVM. The SVMwas constructed by using the SVR (support vector
regression) imported from the sklearn.svm in the Scikit-learn li-
brary. The used kernel is the radial basis function, and the param-
eters C, gamma and epsilon in the trained SVR model are
respectively set as 1� 103, 0.9 and 1� 10�3.

GBR. The GBR was constructed based on the ensemble model
from the sklearn package. The number of estimators, the maximum
depth, the minimum sample split and the learning rate are set as
500, 8, 2 and 0.01, respectively for fitting the GBR. The individual
regression tree is grown by using the gradient boosting tominimize
the least squares loss.

RNN. The RNN was defined and trained by using the Keras li-
brary. The RNNmodel defines the LSTMwith 50 neurons in the first
hidden layer and 2 neurons in the output layer for predicting the
wind farm power and thrust. The input shape is set as 1 time step
with 4 features. The mean absolute error (MAE) loss function and
the efficient adam optimizer of stochastic gradient descent were
used for training the LSTM RNNmodel. The RNNmodel has been fit
for 100 training epochs with a batch size of 60.
The following commonly used comparison metrics in Eqs.

(27)e(30) are used to assess the accuracy of the machine learning
approaches since they have been extensively used to describe the
data prediction accuracy.

The relative percentage error (RPE):

RPE¼ yi � byi
yi

� 100% (27)

where yi and byi are respectively the real value and the prediction
value, i is the index of the predictions.

The mean absolute percentage error (MAPE)

MAPE¼ 1
n

Xn
i¼1

				yi � byiyi

				� 100% (28)

The minimum absolute relative percentage error (MARPE)

MARPE ¼ min
�				yi � byiyi

				� 100%
�

(29)

The root mean square error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðyi � byiÞ2
vuut (30)

As illustrated in the above Eqs. (27)e(30), the relative errors are
calculated by dividing the errors between the real and predicted
values by the corresponding real values, while the absolute errors
are calculated by taking the absolute values of these relative errors.
In addition, the CPU time for implementing the algorithms is also
employed as an important metric for evaluating the computational
efficiency of the five algorithms. For each scenario, the algorithms
are ranked by 1e5, where 1 represents the best and 5 represents
the worst.

4.2. The prediction results under different wind speeds

This section presents the prediction results under different
inflow wind speeds of 8m/s, 16m/s and 28m/s while the wind
inflow direction is fixed at 270�. The prediction results under 8m/s
wind speed are presented in Table 1 and Figs. 4 and 5. In this sce-
nario, the validation data has 6000 samples and the prediction
results are extremely accurate. As illustrated in Table 1, the SVM has
the best performance in wind farm power prediction, while the
RNN has the best performance in predicting wind farm thrust. The
minimum MAPE (%) for wind power prediction is 0.0412% and the
minimum MAPE (%) for wind farm thrust prediction is 0.0258%,
which indicate that the relative accuracies (calculated by (100%-
MAPE)) of wind farm power and thrust predictions can achieve
99.9588% and 99.9742%, respectively. Although the five algorithms
have been ranked from 1 to 5, there exist very minor differences
among them. The lowest relative prediction accuracy can still
achieve 99.7%, which is sufficient for data-driven wind farm pre-
dictions. The GRNN uses only 0.037s to process 6000 data samples,
which means each data sample can be processed in 5 ms by using
the GRNN. Therefore, it is clear that the GRNN has the best
computational efficiency.

As shown in Fig. 4, the predicted averaged wind farm power and
thrust coincide highly with the real values. It is really difficult to
distinguish the differences between the prediction results from the
RNN and SVM, while the prediction results from the GRNN, RF and
GBR can be observed clearly. The prediction results indicate that the
RNN and SVM have the best prediction accuracy which is in good



Table 1
The prediction results under 8m/s free stream wind speed.

Methods GRNN RF SVM GBR RNN

Metrics

Wind farm power dataset MAPE (%) 0.0646 0.277 0.0412 0.2067 0.0437
MARPE (� 10�4) 0.2592 0.4611 0.0119 0.2926 0.1329
RMSE 0.001 0.0045 0.0006 0.0032 0.0007
CPU time (s) 0.0369 0.1676 0.365 0.1666 0.1486
Rank 3 5 1 4 2

Wind farm thrust dataset MAPE (%) 0.066 0.2223 0.069 0.191 0.0258
MARPE (� 10�4) 0.2119 0.0415 0.0843 0.0024 0.1234
RMSE (� 10�3) 0.2305 0.9079 0.2380 0.7158 0.0893
CPU time 0.0379 0.1496 0.1666 0.1468 0.2126
Rank 2 5 3 4 1

Fig. 4. The wind farm prediction results under 8m/s free stream wind speed (a) Wind farm power (b) Wind farm thrust.

X. Yin, X. Zhao / Energy 186 (2019) 115704 9
agreement with the results as shown in Table 1.
As shown in Fig. 5(a), the RNN and SVMhave the best RPE values

which are clearly between ±0.3%, while the RF and GBR have much
higher RPE values between �2.5% and 1.5%. As shown in Fig. 5(b),
the RNN clearly has the lowest RPE values and the RPE values of the
RF and GBR are much higher. Therefore, the RNN and SVM have the



Fig. 5. The RPE results under 8m/s free stream wind speed (a) Wind farm power dataset (b) Wind farm thrust dataset.
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best prediction accuracy and the RNN exhibits the best accuracy in
wind farm thrust predictions.

Table 2 and Fig. 3 illustrate the results for the 6000 data points of
Table 2
Prediction results under 16m/s free stream wind speed.

Methods GRNN

Metrics

Wind farm power dataset MAPE (%) 0.0827
MARPE (� 10�4) 0.0557
RMSE 0.0049
CPU time (s) 0.0329
Rank 3

Wind farm thrust dataset MAPE (%) 0.1822
MARPE (� 10�3) 0.0085
RMSE 0.0008
CPU time (s) 0.0419
Rank 3
power and thrust predictions by using the five algorithms under
the inflow wind speed of 16m/s. For the wind farm power pre-
diction, the SVM has the best accuracy with the MAPE of only
RF SVM GBR RNN

0.4209 0.0118 0.3091 0.0403
0.5342 0.0624 02029 0.1005
0.0264 0.0007 0.019 0.0023
0.1766 0.362 0.1596 0.1275
5 1 4 2
0.4319 0.0755 0.317 0.041
0.1813 0.053 0.0061 0.0104
0.0021 0.0003 0.0015 0.0002
0.1626 0.1686 0.1576 0.2099
5 2 4 1
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0.0118% and the RF performs the worst. For the wind farm thrust
prediction, the RNN holds the best accuracy while the RF performs
the worst. In terms of the CPU time, the GRNN prediction is the best
(around 0.04s for 6000 data points). However, the differences
among the five algorithms are very minor, and all of them can
achieve the relative prediction accuracy of 99% which is enough for
wind farm prediction applications.

As shown in Fig. 6, the RNN and SVM can almost achieve the
same and best prediction performances in wind farm power and
thrust predictions since their prediction points are almost located
at the accurate positions of the accurate 45� diagonal straight line
across the figure and it is rather difficult to distinguish them. The
prediction points from the RF and GBR clearly distribute more
widely around the accurate points and hence their prediction ac-
curacies are a little lower.

As shown in Fig. 7(a), the RNN and SVM clearly exhibits the best
Fig. 6. The wind farm prediction results under 16m/s free strea
RPEs in comparison with the other three algorithms. The RNN has
the lowest RPE values than the other four algorithms as shown in
Fig. 7(b). The prediction results by using GBR and RF are distributed
sporadically between �5% and 2%. The RNN and SVM clearly have
the best prediction accuracy and particularly the wind farm thrust
prediction accuracy of the RNN is the best. The results of the RPE
values also have good agreement with those presented in Table 2.

The prediction results of the wind farm under 28m/s inflow
wind speed are presented in Table 3, Figs. 8 and 9. As illustrated in
Table 3, the RNN is ranked the best in wind farm power and thrust
predictions while the SVM is ranked the second. The minimum
MAPE is 0.0437% for power predictionwhile the minimumMAPE is
about 0.0377% for thrust prediction. The minimum CPU time has
been achieved by using the GRNN and the time for processing 6000
data samples can be made as low as 0.0329s. The differences of the
prediction performances in the five algorithms are really minor and
m wind speed (a) Wind farm power (b) Wind farm thrust.



Fig. 7. The RPE results under 16m/s free stream wind speed (a) Wind farm power dataset (b) Wind farm thrust dataset.

Table 3
Prediction results under 28m/s free stream wind speed.

Methods GRNN RF SVM GBR RNN

Metrics

Wind farm power dataset MAPE (%) 0.1432 0.4153 0.053 0.3063 0.0437
MARPE (� 10�3) 0.0165 0.1328 0.0096 0.124 0.019
RMSE 0.0055 0.017 0.0019 0.0124 0.0018
CPU time (s) 0.0329 0.1731 0.1805 0.1581 0.1207
Rank 3 5 2 4 1

Wind farm thrust dataset MAPE 0.1236 0.4202 0.1071 0.3094 0.0377
MARPE (� 10�3) 0.1563 0.0117 0.001 0.0177 0.0283
RMSE (� 10�3) 0.194 0.7676 0.1798 0.5588 0.0613
CPU time (s) 0.0489 0.1371 0.0459 0.1694 0.1297
Rank 3 5 2 4 1
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the RF can still achieve the relative good accuracy of 99.58%, which
is the lowest, but is enough for wind farm prediction applications.
As shown in Fig. 8, the prediction points from the RNN and SVM
are in very good agreement with their real values while the points



Fig. 8. The wind farm prediction results under 28m/s free stream wind speed (a) Wind farm power (b) Wind farm thrust.
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predicted by the GRNN have a little bit deviations from the real
values. The prediction points from the RF and GBR are locatedmuch
widely around the accurate 45� diagonal straight line across the
figure, which means their prediction performances are not as good
as the RNN and SVM.

As shown in Fig. 9(a), the RPE values of the RNN and the SVM are
most converged around 0, while the RPE values of the GRNN, the RF
and the GBR varies between �5% and 3%. As shown in Fig. 9(b), the
RNN has the most converged and lowest RPE values around 0 in
comparison with the other four algorithms. It is clear that the RNN
and SVMhave the narrowest range of RPE, and particularly the RNN
has the best performance in wind farm thrust predictions.
4.3. The predication results under different wind directions

This section presents the prediction results under different
inflow wind directions of 180�, 225� and 315� with constant inflow
wind speed of 16m/s.

Table 4 and Figs. 10 and 11 show the prediction performance
comparisons of the five algorithms with 6000 sample data points
under 180� wind direction. The SVM outperforms others in power
predictions while the RNN outperforms others in thrust pre-
dictions, and the corresponding values of MAPE are respectively
0.0247% and 0.0363%. The GRNN has the lowest computation time
(0.03s for processing 6000 data samples) in the two cases and
hence is the most computationally efficient. The differences among
these algorithms are really minor e each of them can achieve a
prediction accuracy of at least around 99%.



Fig. 9. The RPE results under 28m/s free stream wind speed (a) Wind farm power dataset (b) Wind farm thrust dataset.

Table 4
Prediction results under 180� wind direction.

Methods GRNN RF SVM GBR RNN

Metrics

Wind farm power dataset MAPE (%) 0.1795 0.4178 0.0247 0.3074 0.0357
MARPE (� 10�4) 0.1688 0.6140 0.0014 0.0235 0.2043
RMSE 0.0098 0.0258 0.0014 0.0187 0.0021
CPU time (s) 0.0309 0.1775 0.0698 0.1605 0.2262
Rank 3 5 1 4 2

Wind farm thrust dataset MAPE (%) 0.063 0.4641 0.0537 0.3427 0.0363
MARPE (� 10�4) 0.3112 0.9986 0.065 0.0426 0.1002
RMSE 0.0003 0.0023 0.0002 0.0016 0.0002
CPU time (s) 0.0329 0.1646 0.1396 0.1616 0.1287
Rank 3 5 2 4 1
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The comparisons between the real values and the predicted
values from the five algorithms are shown in Fig. 10. As illustrated
in this figure, the RNN and the SVM have the best prediction per-
formances since their prediction points are almost aligned with the



Fig. 10. The wind farm prediction results under 16m/s wind speed and 180� wind direction (a) Wind farm power (b) Wind farm thrust.

X. Yin, X. Zhao / Energy 186 (2019) 115704 15
45� diagonal straight line across the figure. The predicted data
points from the other three algorithms have a little deviations from
the 45� diagonal straight line, which means their prediction per-
formances are not as good as the RNN and the SVM.

The similar prediction results can be found in Fig. 11 as those in
Table 4 and Fig. 10. The RPEs of RF and GBR scatter widely
between �5% and 3% while the RPEs of RNN and SVM can be well
bounded between ±0.05%, which are clearly smaller than those of
the GRNN and GBR. The discrepancies revealed in Fig. 11 for the five
methods are in good agreement with that in Table 4 and Fig. 10,
which suggests that the RNN and SVM are the best choices for wind
farm power prediction while the RNN is the best choice for wind
farm thrust prediction.

The prediction performance and test results of the wind farm
under 225� by using 6000 sampling data points are presented in
Table 5, Figs. 12 and 13. As shown in Table 5, the SVM performs the
best in wind farm power prediction while the RNN has the best
accuracy in predicting wind farm thrust. The corresponding MAPEs
are respectively 0.0318% and 0.0303%. The GRNN outperforms the
SVM in wind farm thrust prediction, and it only needs 0.0309s CPU
time for processing 6000 data points. The prediction performances
of all the five algorithms are also in good agreement with the
previous cases and 99% relative accuracy can be readily reached by
all the five methods, which suggests that these methods can be
readily used in wind farm predictions.

As illustrated in Fig. 12, the prediction points from the RNN and
the SVM are almost aligned with the accurate the 45� diagonal
straight line and it is very difficult to distinguish them, which



Fig. 11. The RPE results under 16m/s wind speed and 180� wind direction (a) Wind farm power dataset (b) Wind farm thrust dataset.

Table 5
The prediction results under 225� wind direction.

Methods GRNN RF SVM GBR RNN

Metrics

Wind farm power dataset MAPE (%) 0.0978 0.4314 0.0318 0.3061 0.0322
MARPE (� 10�4) 0.0653 0.0092 0.0613 0.1882 0.1117
RMSE 0.0058 0.0272 0.0018 0.0189 0.0018
CPU time (s) 0.0319 0.1775 0.1835 0.1642 0.2439
Rank 3 5 1 4 2

Wind farm thrust dataset MAPE (%) 0.0439 0.4325 0.0821 0.3116 0.0303
MARPE (� 10�4) 0.2963 0.7803 0.021 0.2985 0.1152
RMSE 0.0002 0.002 0.0003 0.0014 0.0001
CPU time (s) 0.0309 0.1596 0.1556 0.1631 0.1231
Rank 2 5 3 4 1
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means the RNN and the SVM have the best prediction perfor-
mances. On the other hand, the prediction points from the GBR and
the RF scatter much widely in the figure, which suggest their
performances are not as good as the RNN and the SVM.
As illustrated in Fig. 13, both the RNN and SVM achieve much

bounded RPEs within ±0.05%, whereas the RPEs of the RF and GBR



Fig. 12. The wind farm prediction results under 16m/s wind speed and 225� wind direction (a) Wind farm power (b) Wind farm thrust.

X. Yin, X. Zhao / Energy 186 (2019) 115704 17
varies more widely 2% and �6%. More particularly, the RPE of the
RNN is obviously smaller than that from the SVM as shown in
Fig. 13(b) which means the RNN outperforms the SVM inwind farm
thrust predictions. All the RPE results also agree very well with
those in Table 5 and Fig. 12.

The prediction performances of the five algorithms under 225�

wind direction and 16m/s inflow wind speed are compared in
Table 6, Figs. 14 and 15. The results indicate similar discrepancies
between the wind farm power and thrust predictions as those in
the aforementioned cases. The prediction model derived by the
SVM outperforms other models in predicting the wind farm power
while the RNN has the best performances in predicting the wind
farm thrust. The GRNNmodel is the most computationally efficient
and has relatively high prediction accuracy. All the five methods
have very minor differences in wind farm predictions and the
relative prediction accuracy can reach 99%.
As obviously shown in Fig. 14, almost all the prediction points

from the RNN and the SVM are located around the accurate 45�

diagonal straight line and it is very difficult to distinguish them. The
prediction points from the GRNN have a little deviations from the
accurate 45� diagonal straight line while the prediction points from
the GBR and the RF scatter much widely around the accurate 45�

diagonal straight line. All the results reveal that the RNN and the
SVM have the best prediction performances while the GRNN can be
ranked as the third.

As obviously shown in Fig. 15, the differences of the RPEs of the
five methods can be discerned in wind farm power and thrust
predictions. The convergence ranges of the RF and SVM can be
achieved between ±0.05%, while the RPEs of the GRRN and GBR
vary widely between 2% and �5%, which shows good agreement



Fig. 13. The RPE results under 225� wind direction (a) Wind farm power dataset (b) Wind farm thrust dataset.

Table 6
The prediction results under 315� wind direction.

Methods GRNN RF SVM GBR RNN

Metrics

Wind farm power dataset MAPE (%) 0.0854 0.4129 0.0314 0.3001 0.0369
MARPE (� 10�3) 0.0156 0.0318 0.044 0.1089 0.0016
RMSE 0.005 0.0258 0.0017 0.0185 0.0022
CPU time (s) 0.0339 0.1785 0.1655 0.1636 0.1326
Rank 3 5 1 4 2

Wind farm thrust dataset MAPE (%) 0.0930 0.4199 0.0765 0.3054 0.0451
MARPE (� 10�4) 0.7858 0.298 0.0829 0.1652 0.067
RMSE 0.0005 0.002 0.0003 0.0014 0.0002
CPU time (%) 0.0319 0.1676 0.1476 0.1636 0.1337
Rank 3 5 2 4 1
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with the aforementioned results and indicates the RNN and the
SVM have the best prediction accuracy.
By comparing the prediction results in sections 4.2 and 4.3, very
good agreement can be achieved among the five typical machine



Fig. 14. The wind farm prediction results under 16m/s wind speed and 315� wind direction (a) Wind farm power (b) Wind farm thrust.
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learningmethods during the 6 different scenarios. The RNN and the
SVM exhibit the best prediction accuracy, and particularly the RNN
has the best accuracy in wind farm thrust predictions. The GRNN
uses the lowest CPU time for processing dataset and is the most
computationally efficient. The differences among the five methods
are rather minor and all the five algorithms hold very high pre-
diction accuracy of around 99%, which are suitable for wind farm
predictions. In addition, the five typical machine learning methods
for prediction purpose can also be applied in other typical energy
systems including the vibrational energy harvesters [41e43].

5. Conclusion

This paper has investigated the big data-driven multi-objective
prediction framework for predicting the wind farm power output
and structural fatigue. The prediction framework was synthesized
by using the averaged wind farm power output and the equivalent
thrust of turbine as the response variables and the wind conditions,
control settings and turbine characteristics as predictor variables.
The prediction models were subsequently constructed with five
different data mining algorithms including the GRNN, the RF, the
SVM, the GBR, and the RNN. The prediction performances of the five
approaches were compared and evaluated based on the most
recent version of FLORIS. The test results have validated that all
these methods can achieve the relative accuracy of around 99% or
more, which is good enough for practical applications. The RNN and
SVM exhibit the best accuracy, and particularly the RNN has the
best accuracy in thrust predictions. The results also demonstrate
that the GRNN has the best computational efficiency.
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Fig. 15. The RPE results under 16m/s wind speed and 315� wind direction (a) Wind farm power dataset (b) Wind farm thrust dataset.
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