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A B S T R A C T   

Various methods have been proposed for defining an environmental contour, based on different 
concepts of exceedance probability. In the inverse first-order reliability method (IFORM) and the 
direct sampling (DS) method, contours are defined in terms of exceedances within a region 
bounded by a hyperplane in either standard normal space or the original parameter space, cor-
responding to marginal exceedance probabilities under rotations of the coordinate system. In 
contrast, the more recent inverse second-order reliability method (ISORM) and highest density 
(HD) contours are defined in terms of an isodensity contour of the joint density function in either 
standard normal space or the original parameter space, where an exceedance is defined to be 
anywhere outside the contour. Contours defined in terms of the total probability outside the 
contour are significantly more conservative than contours defined in terms of marginal exceed-
ance probabilities. In this work we study the relationship between the marginal exceedance 
probability of the maximum value of each variable along an environmental contour and the total 
probability outside the contour. The marginal exceedance probability of the contour maximum 
can be orders of magnitude lower than the total exceedance probability of the contour, with the 
differences increasing with the number of variables. For example, a 50-year ISORM contour for 
two variables at 3-h time steps, passes through points with marginal return periods of 635 years, 
and the marginal return periods increase to 10,950 years for contours of four variables. It is 
shown that the ratios of marginal to total exceedance probabilities for DS contours are similar to 
those for IFORM contours. However, the marginal exceedance probabilities of the maximum 
values of each variable along an HD contour are not in fixed relation to the contour exceedance 
probability, but depend on the shape of the joint density function. Examples are presented to 
illustrate the impact of the choice of contour on simple structural reliability problems for cases 
where the use of contours defined in terms of either marginal or total exceedance probabilities 
may be appropriate. The examples highlight that to choose an appropriate contour method, some 
understanding about the shape of a structure’s failure surface is required.   

1. Introduction 

Extreme responses of marine structures are often calculated using the environmental contour method [1,2]. The environmental 
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contour method provides a computationally efficient approximation to a full long-term analysis [3], sometimes referred to as the ‘all 
sea states approach’. The method involves first estimating a model for the joint distribution of two or more environmental variables. 
The joint distribution is then used to calculate a set of points which have equal joint exceedance probability, that define a contour in 
two dimensions, a surface in three dimensions or a hypersurface in higher dimensions. The set of points is commonly referred to as a 
contour, regardless of the number of dimensions. The responses of the structure are then estimated at a discrete number of points along 
the contour, so-called design conditions, and the maximum response along the contour is compared with a maximum allowable 
response. 

The objective of the environmental contour (EC) method is to find a region of the environmental parameter space (referred to here 
as the ‘design region’) such that a structure that can withstand all environmental conditions within that region has a probability of 
failure of less than or equal to a specified value. The environmental contour represents the boundary of the design region (see Fig. 1). 
The various methods used for constructing environmental contours make different assumptions about the shape of the failure region 
(the region of the environmental parameter space in which the structure fails) and consequently what constitutes an exceedance of the 
environmental contour. 

The random nature of the structural response conditional on environmental parameters is not modelled explicitly in the EC method, 
and instead the structure is assumed to fail whenever the environmental conditions are within the failure region. To account for the 
effect of neglecting the short-term variability of the response, the contour exceedance probability is adjusted by an ‘inflation factor’ 
(see Ref. [4]). The maximum response along the T-year contour is then taken as an estimator of the T-year response. 

Unlike the univariate case, there is no unique definition of multivariate exceedance (see e.g. Ref. [5,6]). Consequently, there are 
multiple ways to define an environmental contour. The commonly used Inverse First-Order Reliability Method (IFORM) [4] and direct 
sampling (DS) method [7] both make the assumption that the failure region is convex and that the failure surface can be approximated 
as a hyperplane. This assumption is equivalent to defining the contour exceedance probability as a marginal exceedance probability 
under a rotation of the axes. 

When the failure region is convex, the FORM and DS methods give a conservative approximation to the failure probability 
(assuming that the contour exceedance probability has been adjusted to account for short-term variability of the response). When the 
failure region is concave, the IFORM and DS methods will underestimate the true failure probability. To address this issue, the Inverse 
Second-Order Reliability Method (ISORM) [8] and highest density (HD) region [9] environmental contour methods are both defined in 
terms of the total probability outside the contour. This results in a failure probability that is always conservative and requires no 
assumptions about the shape of the failure region. 

The probability that an observation falls anywhere outside a contour is, by definition, larger than the probability an observation is 
larger than the upper bound of the contour in a particular dimension (the marginal exceedance probability). Therefore if the same 
exceedance probability is used to define both types of contour, then the ISORM and HD contours will be significantly more conser-
vative than the IFORM or DS contours. 

Comparisons between IFORM and DS contours have been presented in previous studies (e.g. Ref. [10–13]). However, the rela-
tionship between contours defined in terms of marginal exceedance probabilities and those defined in total exceedance probabilities 
has not previously been studied in detail, although example comparisons were presented in Refs. [8,9]. The purpose of this article is to 
provide a comparison of the relative levels of conservatism between contours defined in terms of marginal and total exceedance 
probabilities. In particular, the objective is to quantify the marginal exceedance probabilities associated with ISORM and HD contours 
and the total exceedance probabilities for IFORM and DS contours. 

Understanding the total exceedance probabilities associated with IFORM and DS contours is useful for several purposes. Firstly, the 
total exceedance probability of the contour provides an upper bound on the failure probability of structure designed to withstand all 
conditions along the contour (under the simplifying assumption of a deterministic response). Secondly, knowing the total exceedance 

Fig. 1. Illustration of terminology.  

E. Mackay and A.F. Haselsteiner                                                                                                                                                                                   



Marine Structures 75 (2021) 102863

3

probability of a contour is useful when assessing the fit of a joint probability model to the data, as it can be used to quantify the 
expected number of observations outside the contour. 

Similarly, there are several reasons why it is useful to quantify the marginal exceedance probabilities associated with ISORM and 
HD contours. Firstly, quantifying the marginal exceedance probabilities for the highest values of each variable along an ISORM or HD 
contour provides a direct comparison to IFORM and DS contours. In particular, the IFORM contour is completely contained within the 
ISORM contour, so the return period of the largest value of each variable along the contour is a useful metric for quantifying the 
difference between the methods. 

Secondly, the largest values of each variable along a contour provide a direct comparison to univariate analyses. Univariate an-
alyses of extreme environmental conditions are often conducted in parallel with multivariate analyses. Moreover, some design 
standards for marine structures specify reliability criteria in terms of both univariate return values and environmental contours, 
depending on the load case (e.g. Ref. [14,15]). It is therefore of interest to examine how the maximum value of each variable along the 
contour compares to the univariate return value. 

Comparing the marginal and total exceedance probabilities of different contour methods provides an indication of the conservatism 
of each method. However, the actual conservatism or non-conservatism in failure probabilities estimated using each method is 
dependent on the structure of interest and the environmental conditions. In this article we provide some simple examples to illustrate 
the impacts that the choice of contour has on estimates of extreme structural response. 

The estimation of the joint distribution of environmental variables is the focus of ongoing research. Methods for modelling the joint 
distribution include hierarchical conditional models [4,16–19], copula models [20–23], kernel density estimates [24,25] and con-
ditional extreme value models [26–29]. In the following we assume that a model has been estimated for the joint distribution and 
contours are to be derived from the joint distribution. There is a wide range of definitions of environmental contours, such as the 
method proposed by Haver [16,30], and the isodensity contour methods described by NORSOK [[31], p.12] and DNV GL [[32], Section 
3.7.2.4], methods based on joint exceedance regions [27], or methods based on univariate analyses [33]. In the present work we focus 
on four types of contour, namely IFORM, ISORM, DS and HD contours, due to their analogous definitions in terms of either marginal or 
total exceedance probabilities. 

The article is organised as follows. We start by presenting the definitions of the various types of contour in Section 2. The marginal 
exceedance probabilities associated with the largest values of each variable on IFORM, ISORM and HD contours are discussed in 
Section 3. The complementary problem of quantifying the total probability outside IFORM and DS contours is discussed in Section 4. 
Section 5 presents three case studies, to illustrate the effect of using different types of contour in some simplified structural design 
problems. Finally, a summary and conclusions are presented in Section 6. 

2. Environmental contour definitions 

Before presenting the definitions of the environmental contour methods, it is useful to introduce some notation. Consider the joint 
distribution of a vector of n random variables, X = (X1,…,Xn), with joint distribution F(x) = Pr(X1 ≤ x1,…,Xn ≤ xn) and marginal 
distributions Fj(xj) = Pr(Xj ≤ xj), j = 1,…n,. The corresponding marginal exceedance probabilities are denoted Qj(x) = 1 − Fj(x). In 
general, we will use α to denote an exceedance probability. The marginal exceedance probability associated with the largest value of Xj 

along a contour is denoted αm,j and the total probability outside the contour is denoted αt (see Fig. 2). The quantile of Fj at marginal 
exceedance probability α, is denoted xj,α and is the solution of Qj(xj,α) = α. The lower and upper bounds of Xj along a contour at 

Fig. 2. An environmental contour with associated marginal and total exceedance probabilities.  
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exceedance probability α are denoted cL
j,α and cU

j,α. In many of the examples below we are interested in the upper bound only and will 
drop the superscript U. Similarly, when we are considering the values of xj,α and cj,α for the same variable we will drop the subscript j. 

2.1. Inverse first-order reliability method (IFORM) 

The most commonly applied EC method in marine design is the Inverse First-Order Reliability Method (IFORM) [4]. The method is 
based on the First-Order Reliability Method (FORM), used to estimate a structure’s failure probability [[34], pp. 71–125]. In the FORM 
approach, the joint distribution of X1,…,Xn is transformed to independent standard normal variables, U1,…Un using the Rosenblatt 
transformation [35], given by 

u1 = Φ− 1(FX1 (x1))

u2 = Φ− 1( FX2 |X1 (x2|x1)
)

⋮
un = Φ− 1( FXn |X1 ,…,Xn− 1 (xn|x1,…, xn− 1)

)
.

(1)  

where Φ is the cumulative distribution function (CDF) of the standard univariate normal distribution. The design point is defined as the 
highest probability point on the failure surface in U-space, which corresponds to the closest point of the failure surface to the origin (see 
Fig. 3). The radius from the origin to the design point, referred to as the reliability index, is denoted βF. Finally, the reliability index is 
used to estimate the structure’s probability of failure by assuming that the failure surface is linear at the design point, such that 

Φ(βF)= 1 − α. (2) 

In the IFORM approach, the location of the failure surface and design point are not known. Instead, the desired reliability index, βF, 
is specified and the IFORM contour in U-space is defined as the set of points at radius βF. The environmental contour in the original 
space is then obtained by applying the inverse Rosenblatt transformation to the contour in U-space. 

An illustration of the definition of the IFORM contour in 1D and 2D is shown in Fig. 4 (a) and (b). Although contours are defined for 
two or more dimensions, the definition is still valid in 1D and serves to illustrate how the maximum value along the contour is related 
to the marginal return value. It is clear that for an IFORM contour at exceedance probability α, the maximum values of the standard 
normal variables U1,…,Un have marginal exceedance probability α in U-space. However, the same is not true for the maximum values 
of X1,…,Xn along the IFORM contour in the original parameter space. In fact, the Rosenblatt transformation only ensures that the 
maximum value of X1 along the IFORM contour, c1,α, has exceedance probability α and the exceedance probabilities of cj,α (j > 1) can 
be either greater than or less than α. The shape of the contour and maximum values of each variable along the contour are dependent 
on the order in which conditional distributions are specified in the Rosenblatt transformation (2.1). This is discussed further in Section 
3.1. 

2.2. Inverse second-order reliability method (ISORM) 

The IFORM approximation is conservative when the failure region is convex, but is not conservative if the failure region is concave. 
Chai and Leira [8] proposed a second-order approximation to the failure surface which is always conservative. In the ISORM method 
the failure surface is assumed to enclose a circle in U-space, centred at the origin. The radius βSn, is defined so that the probability that 
an observation falls outside the circular region is α. Chai and Leira noted that since the sum of n independent standard normal variables 
follows a Chi-squared distribution on n degrees of freedom, χ2

n , the radius βSn can be written as: 

χ2
n

(
β2

Sn

)
= 1 − α. (3) 

Fig. 3. Illustration of FORM approximation to failure surface.  
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In the ISORM definition, the radius, βSn, is a function of both the exceedance probability α and the number of dimensions, n. As with 
the IFORM contour, the ISORM contour in the original space is obtained by applying the inverse Rosenblatt transformation to the 
contour in U-space. An illustration of the definition of ISORM contours in 1D and 2D is shown in Fig. 4 (c) and (d). As with the IFORM 
method, ISORM contours are dependent on the order in which conditional distributions are specified in the Rosenblatt transformation. 
This effect is discussed further in Sections 3.1 and 3.2. 

The ISORM contour definition proposed by Chai and Leira [8] represents a particular type of SORM approximation. More generally, 
SORM can be used to provide a less conservative approximation to a convex failure region (see e.g. Refs. [36,37]). However, in the 

Fig. 4. Illustration of definitions of IFORM, ISORM, direct sampling (DS) and highest density (HD) contours in 1D and 2D.  
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present context we shall only consider the more conservative ISORM contours defined above. 

2.3. Direct sampling method (DS) 

An alternative to the IFORM method was proposed by Huseby et al. [7]. They noted that the assumption of a linear failure surface in 
U-space can be difficult to justify, since when the inverse Rosenblatt transformation is applied, the assumed failure surface is no longer 
linear in the original parameter space. In the DS method, the contour is defined in a similar way to the IFORM contour, but with the 
failure surface assumed to be linear in the original parameter space. 

In 2D, the contours are constructed as follows. For a given angle θ, the halfspace perpendicular to the line at angle θ to the origin is 
found which contains probability α (see Fig. 4(f)). A finite number of angles are selected and contours are defined as the intersection of 
the lines bounding each halfspace. Huseby et al. proposed that the location of the halfspace at each angle could be estimated by Monte 
Carlo simulation under the joint distribution and projection of the variables on to the line at angle θ to the origin: y = x1 cos θ+
x2 sin θ. The distance of the halfspace from the origin is then found as the empirical quantile of y at exceedance probability α. 

The method can be interpreted as a rotation of the axes and calculation of a marginal exceedance probability on the rotated axes 
(this is also true of the IFORM method in U-space). The use of Monte Carlo simulation to estimate the marginal exceedances avoids 
numerical issues with integrating the joint distribution and allows the method to be easily extended into higher dimensions. 

We see that, by definition, the maximum value of each variable along a DS contour has marginal exceedance probability α. Since DS 
contours are defined as the intersection of straight line segments which describe exceedances at a given angle, the resulting contours 
define a design region which is always convex, regardless of the shape of the joint distribution. 

2.4. Highest density method (HD) 

Highest density (HD) contours can be thought of as the X-space analogue of ISORM contours in U-space, in the same way that DS 
contours are X-space analogues of IFORM contours U-space. HD contours were proposed as a conservative environmental contour that 
does not assume a convex failure region [9]. They are defined based on highest density regions, a statistical concept used in a range of 
contexts (see e.g. Ref. [38]). A highest density region, R, is the smallest possible region in the variable space that contains a given 
probability content. Mathematically, it can be expressed as the set of all x whose probability density is greater than a threshold fc: 

R(fc)= {x∈Rn : f (x)≥ fc}, (4)  

where f(x) is the joint density function and fc is chosen as the largest threshold that yields a region, which contains a probability of at 
least 1 − α, that is 

fc = argmax
f∈[0,∞)

Pr(X∈R(f ))≥ 1 − α. (5) 

Then, the α-exceedance highest density contour is defined as the set C(α)⊂R(fc) that contains exactly the environmental states at 
which the probability density equals fc: 

C(α)= {x∈Rn : f (x)= fc}. (6)  

2.5. Rationale for definition of contours in terms of marginal and total exceedance probabilities 

For the contour methods discussed above, the definitions of the exceedance regions are related to the assumptions made about the 
shape of the failure region. Since the shape of the failure region is not known when a contour is constructed, the conservative ap-
proximations for the shape of the failure surface result in the inclusion of both severe and non-severe conditions in the exceedance 

Fig. 5. Sketch showing which observations are counted as exceedances for (a) ISORM or HD contours, and (b) DS contours.  
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region. This is a feature of all the contour methods described above. 
Consider the sketches in Fig. 5, which show 10 years of observations of significant wave height, Hs, and zero-up-crossing period, Tz 

from NDBC wave buoy 44,007, located off the coast of Maine, USA. Fig. 5(a) shows a contour defined in terms of the total exceedance 
probability. For this contour, observations with Hs both above the contour upper bound and below the contour lower bound are 
included in the set of exceedances. Fig. 5(b) shows one of the bounding lines used to construct DS contours at some high exceedance 
probability. The observations to the right of the line are all counted as exceedances at this particular angle. The set of exceedances for 
this angle includes both conditions with high Hs, which may contribute to the failure probability of a structure, and conditions with 
high Tz but low Hs, which are less likely to contribute to the failure probability. Thus, the difference between contours defined in terms 
of marginal and total exceedance probabilities is not whether they include non-severe conditions in the set of exceedances, but which 
non-severe conditions are defined to be exceedances. 

In the environmental contour method the location and shape of the structure’s failure surface is not known (in fact the structure of 
interest need not even be specified in order to construct contours). The inclusion of non-severe conditions in the set of exceedances 
results from either the conservative linear approximation to a convex failure region in the IFORM and DS methods, or the conservative 
approximation of a concave failure region enclosing the design region in the ISORM and HD methods. 

If the HD and ISORM methods are applied to calculate contours for Hs and Tz, then the rationale is not to assume that the structure 
fails at low values of Hs. Rather, the rationale is to define some region of the parameter space, which encloses a total probability of 1 −

α, so that no assumption about the shape of the failure region is required. Similarly, in the example shown in Fig. 5(b), the rationale for 
defining exceedances in this way is to provide a linear approximation to a failure surface, without the need to specify where the failure 
surface is located. 

It would be straightforward to extend the definition of HD or DS contours to define a region of parameter space containing a 
specified probability which does not exclude low values of either X1 or X2, or both (it is less straightforward to do this for IFORM and 
ISORM contours due to the use of the Rosenblatt transformation). However, this would require setting a threshold for what constitutes 
a “low” value, which would be somewhat arbitrary. There are infinitely many ways to define a region which contains probability 1 − α. 
In this work we focus on the four contour methods described above since their definitions are quite general and do not require any 
subjective judgements about threshold levels. 

3. Marginal exceedance probabilities 

3.1. IFORM contours 

As noted in Section 2.1, the shape of the IFORM contour and the marginal exceedance probabilities of cj,α depend on the order in 
which the Rosenblatt transformation is applied. The effect of this is illustrated through two examples below. 

3.1.1. Example 1 
Define a joint probability density function (PDF) as the sum of two bivariate normal distributions, with mean values centred at ± (a,

a): 

fX1 ,X2 (x1, x2)=
1
2
[φ(x1 − a)φ(x2 − a)+φ(x1 + a)φ(x2 + a)], (7) 

Fig. 6. (a) Isodensity contours for joint PDF given in (7). (b) IFORM contours at exceedance probability α = 10− 3 for joint distribution given in (7), 
based on Rosenblatt transformation specified in terms of X2|X1 or X1|X2. Marginal return values at exceedance α and 1 − α for each variable shown 
as dotted lines. 
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where φ is the PDF of the standard normal distribution. The joint PDF fX1 ,X2 (x1, x2) is illustrated in Fig. 6(a) for the case a = 3. The PDF 
is symmetric about the line x1 = x2. The marginal CDF of X1 is 

FX1 (x1)=
1
2
[Φ(x1 − a)+Φ(x1 + a)], (8)  

and the conditional of CDF of X2|X1 is given by 

FX2 |X1 (x2|x1)=
φ(x1 − a)Φ(x2 − a) + φ(x1 + a)Φ(x2 + a)

φ(x1 − a) + φ(x1 + a)
. (9) 

Through the symmetry of (7), the marginal CDF of X2 and conditional CDF of X1|X2 are obtained by switching the variables in the 
expressions above. IFORM contours can be derived by applying the Rosenblatt transformation as defined in (2.1) or by changing the 
conditioning variable to be X2 and defining u1 = Φ− 1(FX2 (x2)), u2 = Φ− 1(FX1 |X2 (x1|x2)). The resulting IFORM contours for the two 
transformations are shown in Fig. 6(b) for an exceedance probability of α = 10− 3. Despite the symmetry of the PDF in the line x1 = x2, 
the IFORM contours are not symmetric about this line and the minimum and maximum values of each variable along the contours 
differ. The contour defined using the transformation in terms of X2|X1 passes through the points (x1,α,median(x2

⃒
⃒x1,α)) and (x1,1− α,

median(x2
⃒
⃒x1,1− α)). However, the minimum value of X2 on the contour is less than x2,1− α and the maximum value of X2 is greater than 

x2,α. In general, if X1 is used as the conditioning variable in the Rosenblatt transformation, then there is no fixed relationship between 
the maximum and minimum values of X2 along the contour and the marginal return values of X2. This is illustrated in the next example. 

3.1.2. Example 2 
In this example, suppose that X1 follows a Weibull distribution, with CDF 

FX1 (x1)= 1 − exp
(

−
(x1 − γ

λ

)k
)

. (10) 

Suppose also that the distribution of X2 conditional on X1 is normal, with mean μ = a1 + a2x1 and standard deviation σ = b1 +

exp(b2 x1). The joint PDF can be written 

fX1 ,X2 (x1, x2)= fX1 (x1)fX2 |X1 (x2|x1). (11) 

To express the joint PDF as fX1 ,X2 (x1, x2) = fX2 (x2)fX1 |X2 (x1|x2) requires numerical integration and differentiation. However, it is 
straightforward to apply the Rosenblatt transformation numerically using either X1 or X2 as the conditioning variable. 

An example is shown in Fig. 7 for the case γ = 0, λ = 1, k = 3, a1 = 0, a2 = 1, b1 = 0.1, b2 = − 1. It is evident that the shape of the 
contour is dependent on the order in which the Rosenblatt transformation is applied. Moreover, the minimum and maximum values of 
the conditional variable along the contour are not in fixed relation to the marginal return values. For the contours based on the 
transformation in terms of X2|X1 (solid lines), the contour at α = 10− 1 has cL

2,α < x2,1− α and cU
2,α < x2,α, whereas for the contour at α =

10− 5 we have cL
2,α < x2,1− α and cU

2,α > x2,α. 
In this example, the differences between the IFORM contours using the different transformation orders are relatively small. 

Nevertheless, it is important to be aware that for a given joint PDF, IFORM contours are not uniquely defined. The impact that this has 

Fig. 7. (a) Isodensity contours of joint PDF in Example 2. (b) IFORM contours for Example 2, based on Rosenblatt transformation specified in terms 
of X2|X1 (solid lines) or X1|X2 (dashed lines). 
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on estimates of structural responses is discussed in Section 5. 

3.2. ISORM contours 

Since IFORM and ISORM contours only differ in the value of β used to define the contour in U-space, the discussion of the influence 
of the transformation on IFORM contours in Section 3.1 is also applicable to ISORM contours. That is, for an ISORM contour at ex-
ceedance probability αt, only αm,1 = Q(c1,αt ) is in fixed relation to αt and αm,j (j > 1) depends on the shape of the joint distribution. In 
the following, we shall only consider the relation between αm,1 and αt. 

The ratio αt/αm,1 for an ISORM contour in n dimensions can be calculated as follows. For a given contour exceedance probability, αt , 
the radius, βSn, of the ISORM contour in U-space is given by (3). The marginal exceedance probability, of c1,αt is then given by 

αm,1 = 1 − Φ(βSn)= 1 − Φ
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[
χ2

n

]− 1
(1 − αt)

√ )

, (12)  

where [χ2
n ]

− 1 is the inverse of the chi-squared CDF. The ratio αt/αm,1 for ISORM contours is therefore a function of αt and n. At present 
environmental contours are most commonly used in two or three dimensions. However, in principle, the method is applicable to any 
number of dimensions. Fig. 8 shows the ratio αt/αm,1 against αt for n = 1,…,5. For a one dimensional ISORM contour, the exceedance 
probability is split evenly between the upper and lower tails of the distribution, so the contour has an non-exceedance probability of αt/

2 in the lower tail and an exceedance probability of αt/2 in the upper tail. Consequently, in 1D we have αt/αm,1 = 2. For higher di-
mensions, the ratio αt/αm,1 increases with both αt and the number of dimensions. For an ISORM contour at exceedance probability αt =

10− 3 we have αt/αm,1 ≈ 10 in two dimensions, and αt/αm,1 ≈ 115 in four dimensions. 
The ratio αt/αm,1 is the ratio of the return period of c1,αt to the contour return period. For example, if sea states are reported at 3 h 

intervals (assuming stationary conditions over this interval), the 50-year contour corresponds to an exceedance probability of αt = 1/
(50 × 365.25 × 24 /3) = 6.84× 10− 6. So the 50-year 2D ISORM contour passes through points with marginal return periods of 635 
years. Similarly, the 50-year 4D ISORM contour passes through points with marginal return periods of 10,950 years. Or to put it 
another way, since IFORM contours are defined in terms of marginal probabilities, we can say that for 3-h observations of 2 variables 
the 50-year ISORM is equivalent to the 635-year IFORM contour and for 4 variables the 50-year ISORM contour is equivalent to the 
10,950-year IFORM contour. 

The difference between c1,αt and x1,αt depends on the shape of the tail of the distribution. For long-tailed distributions a small 
change in return period results in a large change in the return value, whereas for short-tailed distributions a large change in return- 
period will only result in a small change in return value. An example is given here assuming that X1 follows a Weibull distribution (10). 
Fig. 9 shows the Weibull distribution for cases with location parameter γ = 0, scale parameter λ = 1 and various shape parameters k. 
When k = 1 the distribution has an exponential tail. As k increases the upper tail becomes shorter. The ratio between the largest value 
of X1 on the 50-year ISORM contour and the 50-year marginal return value (denoted c50 and x50, for brevity) is shown in Fig. 10 as a 
function of the Weibull shape parameter, k for contours in n = 1,…,5 dimensions. Here we assume a location parameter γ = 0 (the 
ratio c50/x50 is invariant to scale, λ) and assume observations at 3-h intervals as above. The ratio c50/x50 decreases as the Weibull shape 
parameter increases and the upper tail becomes shorter. For a 2D contour c50 is 21% larger than x50 when k = 1 and 10% larger when 
k = 2. For a 4D contour c50 is 45% larger than x50 when k = 1 and 20% larger when k = 2. These differences can potentially have a 

Fig. 8. Ratio of total exceedance probability, αt , to marginal exceedance probability of largest value of X1 along the contour, αm,1 = Q(c1,αt ), against 
αt for ISORM contours in n = 1,…,5 dimensions. 
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large impact on the strength requirements for a structure, so the decision between the use of an ISORM contour over an IFORM or DS 
contour needs to be carefully justified. Some examples where each type may appropriate are presented in Section 5. 

3.3. HD contours 

HD contours are based on the same notion of exceedance as ISORM contours (i.e. they are defined in terms of the total probability 
outside the contour, αt), so we may expect a similar relationship between the total exceedance probability and the marginal ex-
ceedance probabilities of cj,αt . For HD contours in any number of dimensions we have, by definition, cj,αt ≥ xj,αt , since it is not possible 
for a region of parameter space bounded by xj,αt in one dimension to contain a probability greater than αt . 

However, as the HD contour is defined as an isodensity contour in the original parameter space, the relationship between Q(cj,αt )

and αt is dependent on the shape of the density function. Consider the 1D case shown in Fig. 4 (g). In the example shown it is clear that 
F(cL

α) < Q(cU
α ). In general we have F(cL

α) < Q(cU
α ) when the lower tail is steeper than the upper tail, F(cL

α) > Q(cU
α ) when the upper tail is 

steeper than the lower tail and F(cL
α) = Q(cU

α ) when the distribution is symmetric. So the non-exceedance probability of the contour 
lower bound and exceedance probability of the contour upper bound are not in fixed relation to the contour exceedance probability. 

Consider the hypothetical cases where the PDF has a triangular shape, shown in Fig. 11. In the extreme case, where the lower tail 
has a vertical gradient, the α-exceedance probability HD contour has zero non-exceedance probability in the lower tail and exceedance 
probability α in the upper tail, so that cα = xα (i.e. the upper bound of the α-exceedance contour is equal to the α-exceedance marginal 
quantile). In the case that the PDF is symmetric, the exceedance probability is split evenly between the lower and upper tails so that 
cα = xα/2 (i.e. the upper bound of the α-exceedance contour is equal to the marginal quantile at exceedance probability α/ 2). In the 
other extreme case, where the upper tail has a vertical gradient and an upper end point at xm, the exceedance probability of the upper 
bound of the HD contour is zero and cα = xm (i.e. the upper bound of the contour is the upper end point of the distribution). 

These examples are unrealistic, but serve to illustrate the sensitivity of the minimum and maximum points on the contour to the 

Fig. 9. (a) PDF of the Weibull distribution. (b) Upper tail of the Weibull distribution function. Both plots for location parameter γ = 0, scale 
parameter λ = 1 and various shape parameters k. 

Fig. 10. Ratio of the largest value of X1 on a 50-year ISORM contour, c50, to the 50-year marginal return value, x50, assuming a marginal Weibull 
distribution with location parameter γ = 0 and shape parameter k. Results shown for ISORM contours in n = 1,…,5 dimensions. 
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shape of the density function. Now consider a more realistic 1D example, where the random variable X1 follows a Weibull distribution. 
The PDF of the Weibull distribution is 

fX1 (x1)=
k
λ

(x1 − γ
λ

)k− 1
exp

[

−
(x1 − γ

λ

)k
]

. (13) 

When k = 1 the PDF has a vertical gradient in the lower tail and a long upper tail (see Fig. 9 (a)). As k increases, the gradient of the 
lower tail decreases and the gradient of the upper tail increases. As k → ∞ the PDF converges towards a Dirac delta distribution centred 
at X1 = λ+ γ. However, for large finite k the gradient of the lower tail is less than the gradient of the upper tail. 

The effect that the shape of the PDF has on the upper bound of the contour is assessed as follows. For a given total exceedance 
probability αt, the αt - exceedance HD contour is calculated and the upper bound of the contour cαt is found. The ratio cαt/ xαt of the 
contour upper bound to the marginal quantile at exceedance probability αt is shown in Fig. 12(a) as a function of Weibull shape 
parameter k for various contour exceedance probabilities αt. When k = 1 we have cαt = xαt at all exceedance probabilities, since the 
lower tail of the PDF has a vertical gradient. As k increases the ratio cαt/xαt increases as the gradients in the upper and lower tail change. 
The ratio cαt/xαt is dependent on the exceedance probability, since the gradients in the tails are not constant, with cαt → xαt as αt → 0. 
As k increases and the upper tail becomes shorter than the lower tail, cαt → xαt since the value of xαt becomes less sensitive to the 
exceedance probability αt. 

The ratio of the contour exceedance probability to the exceedance probability of the largest point on the contour, αt/ Q(cαt ), is 
shown in Fig. 12(b). In this case the ratio increases monotonically with k. For smaller values of k the ratio αt/Q(cαt ) is larger for larger 
values of αt, but at higher values of αt the trend is reversed. Although αt/Q(cαt ) can be large for large k, the difference between cαt and 
xαt is small since the distribution has a steep gradient in the upper tail. 

In these examples we see that the relationship between the largest value of each marginal variable on the HD contour and the 
marginal quantile at the same exceedance probability is relatively insensitive to the shape of the distribution, despite large differences 
in the exceedance probability. 

In two dimensions the relationship between the marginal exceedance probability of the maximum point along a contour and 
contour exceedance probability is slightly different. Consider the following simple cases where X1 follows a Weibull distribution with 
γ = 0, λ = 1 and k = 1 and X2 is independent of X1, and is either uniformly distributed over [-3 3] or follows a standard normal 
distribution. The joint PDF for the two cases are illustrated in Fig. 13, together with the HD contour at αt = 0.1 and the marginal 
quantile x1,αt . As the Weibull shape parameter is 1, the joint PDF has a vertical gradient at x1 = 0. In the case where X2 is uniformly 
distributed the αt -exceedance HD contour is simply a line at the marginal quantile x1,αt and the 2D contour is equivalent to the 1D case. 
However, when the joint density contours are no longer straight lines parallel to the X2 axis, the highest value of x1 along the αt 
-exceedance HD contour will be greater than x1,αt , since the region X1 ≤ x1,αt is no longer the highest density region containing a 
probability 1 − αt. So in two dimensions, the criteria that one variable has a vertical gradient in the lower tail of the PDF is no longer 

Fig. 11. Examples of marginal and contour exceedance levels for HD method applied to 1D triangular PDFs.  

Fig. 12. (a) Ratio cαt /xαt for a 1D HD contour. (b) Ratio of contour exceedance probability to marginal exceedance probability of largest value of X1 

along contour. Both ratios shown as a function of Weibull shape parameter, k for various total exceedance probabilities αt . 
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sufficient to ensure that cj,αt = xj,αt and in general we will have cj,αt > xj,αt . 
The effect of the Weibull shape parameter on the ratios c1,αt/x1,αt and αt/Q(c1,αt ) is illustrated in Fig. 14 for the case where X1 is 

Weibull distributed and X2 is independent of X1 and follows a standard normal distribution. In contrast to the 1D case, the ratio c1,αt/

x1,αt for the 2D contour is monotonically decreasing with both the shape parameter k and contour exceedance probability αt . As noted 
above, when k = 1, we have c1,αt > x1,αt . As k increases and the gradient of the upper tail increases and the gradient of the lower tail 
decreases, the position of the HD contour is shifted towards higher values of X1 and the upper bound of the contour tends toward x1,αt . 
In general, the differences between the 1D case and 2D case will be dependent on the shape of the joint distribution. In the case that X2 
is uniformly distributed, the 2D case is identical to the 1D case (in terms of the upper and lower bounds of the contour). As the dis-
tribution of X2 moves away from being uniform, the differences between the 1D case and 2D case will increase. 

To illustrate the relationship between marginal and total exceedance probabilities and quantiles in a more realistic case, we use a 
sea state model that has been used in several previous studies on environmental contours (e.g. Refs. [7–9,39]). The model describes the 
bivariate distribution of Hs and Tz. The joint density function is written as 

fHs ,Tz (hs, tz)= fHs (hs)fTz |Hs (tz|hs), (14)  

where Hs is assumed to follow a translated Weibull distribution (13) and Tz follows a log-normal distribution conditional on Hs: 

fTz |Hs (tz|hs)=
1

tzσ
̅̅̅̅̅
2π

√ exp
[
− (lntz − μ)2

2σ2

]

(15) 

The Weibull distribution’s parameters are λ = 2.776, k = 1.471 and γ = 0.8888 while the conditonality of Tz|Hs is modelled with 

Fig. 13. (a) Joint PDF where X1 is Weibull distributed with shape parameter k = 1 and X2 is independent and uniformly distributed. (b) Joint PDF 
where X1 is Weibull distributed with shape parameter k = 1 and X2 is independent and normally distributed. Black lines indicate marginal quantile 
of X1 at α = 0.1. Red dashed lines indicates HD contour at α = 0.1. In case (a) the HD contour coincides with the marginal quantile. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 14. (a) Ratio c1,αt /x1,αt for a 2D HD contour, where X1 is Weibull distributed and X2 is independent and normally distributed. (b) Ratio of 
contour exceedance probability to marginal exceedance probability of largest value of X1 along the contour. Both ratios shown as a function of 
Weibull shape parameter, k for various total exceedance probabilities αt . 
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two dependence functions: 

μ = 0.1 + 1.489h0.1901
s ,

σ = 0.04 + 0.1748exp(− 0.2243hs).
(16) 

Fig. 15(a) shows the computed HD contours at exceedance probabilities αt ∈ [10− 7, 10− 1]. The influence of the Weibull shape 
parameter on the 2D contours was also investigated. Fig. 15(b) shows the HD contours at an exceedance probability of αt = 10− 5 for 
distributions with various Weibull shape parameters (all other parameters of the joint distribution have been left unchanged). 

For comparison with the 1D case, we will consider the maximum value of Hs along the HD contour, as the marginal distribution of 
Hs is Weibull. Fig. 16(a) shows the ratio cαt/xαt , of the maximum value of Hs along the contour to the marginal value of Hs at the same 
exceedance probability. The ratio is shown as a function of the contour exceedance probability αt for values of k between 1 and 3. As in 
the 1D case, the ratio is larger at higher exceedance probabilities. The variation of cαt/xαt is similar to the simple case above, where X2 
is independent and normally distributed, with the ratio decreasing as k increases and the marginal distribution of X1 has a steeper 
gradient in the upper tail. At an exceedance probability of αt = 10− 6 the HD contour maximum Hs is approximately 5% larger than the 
marginal quantile when k = 3 and approximately 10% larger when k = 1. However, in the 1D case we had cαt = xαt when k = 1, 
whereas in 2D cαt > xαt when k = 1, despite the gradient of lower tail of the distribution being vertical at the lower end point of the 
distribution. 

Fig. 16(b) shows the ratio αt/Q(cαt ), of the total exceedance probability to marginal exceedance probability of highest Hs value 
along contour. As in the 1D case, the ratio of probabilities increases as the exceedance probability decreases and also as the tail be-
comes shorter. For a total exceedance probability of 10− 6 the marginal exceedance probability of the highest Hs along the contour is 
approximately 4 times lower when k = 1 and approximately 13 times lower when k = 3. 

4. Total exceedance probabilities 

4.1. IFORM contours 

We now consider the complementary problem of calculating the probability that an observation falls anywhere outside a contour. 
For an IFORM contour defined at marginal exceedance probability αm, the radius of the contour in U-space, βF, is given by (2). The total 
probability outside the contour, αt, is then given by 

αt = 1 − χ2
n

(
β2

F

)
= 1 − χ2

n

([
Φ− 1(1 − αm)

]2
)
. (17) 

The relationship between αm and αt derived here is the same as in Section 3.2. However, for ease of interpretation, the ratio αt/ αm is 
plotted against αm in Fig. 17 for n = 1,…,5. Note that the lowest possible marginal exceedance probability for an IFORM contour is 0.5 
and in this case the corresponding total exceedance probability is 1. Therefore all the lines in Fig. 17 converge at αm = 0.5, αt/ αm = 2. 
In two dimensions the ratio αt/αm = O(10) for αm ≤ 10− 3. This means that the probability of observing an exceedance anywhere 
outside the contour is approximately 10 times higher than the probability of observing an exceedance in any particular half-plane 
tangential to the contour in U-space (i.e. a marginal exceedance at probability αm under some rotation of the axes). For a given 
marginal exceedance probability, the probability of observing an exceedance anywhere outside the contour increases with the number 
of dimensions, since there are more combinations of variables that are outside the contour. For example, in 4D, for an IFORM contour 
defined at a marginal exceedance probability αm = 10− 5 the total exceedance probability is approximately 100 times higher. 

Fig. 15. (a) HD contours of joint density function described in (14)-(16) at various contour exceedance probabilities αt . (b) HD contours at ex-
ceedance probability αt = 10− 5 for same joint distribution shown in (a), but with various values of Weibull shape parameter k (all other parameters 
held constant). 
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4.2. DS contours 

The probability that an observation falls outside an DS contour was investigated using numerical simulation. The joint distribution 
of Hs and Tz used in Section 3.3 was used to simulate a sample of 108 observations. DS contours were calculated with marginal ex-
ceedance probabilities in the range αm ∈ [10− 6,10− 1]. For each marginal exceedance probability, the number of points falling outside 
the contour was counted to obtain an empirical estimate of αt. Fig. 18 shows the ratio αt/αm against αm for the DS contour and an 
IFORM contour. The ratio of total to marginal exceedance probability for the DS contour is almost identical to that for an IFORM 
contour for exceedance probabilities greater than 10− 3, but the ratio for the DS contour is slightly lower than that for the IFORM 
contour at lower exceedance probabilities. 

DS contours can be subject to significant sampling uncertainty if the ratio of the sample size to the return period of the contour is not 
sufficiently large. Techniques such as importance sampling can be used to reduce the need for generating very large samples (see Refs. 
[40]). However, in this case the sample size of 108 was sufficiently large that the ratio αt/αm showed negligible variation over repeated 
simulations for αm up to 10− 6. 

The IFORM contour can be thought of as a special case of the DS contour, when the data are independent normal variables. In this 
special case, the ratio αt/αm would be identical for both DS and IFORM contours at all exceedance probabilities. In general, we would 
expect DS and IFORM contours to be very closely matched when the isodensity contours of the joint distribution are convex. The 
difference in the ratio at low exceedance probabilities shown in Fig. 18 is likely to be related to the shape of the joint distribution, 
which becomes concave at lower exceedance probabilities (see Fig. 15(a)). As the DS contour is convex and the IFORM contour is 
concave, this may cause some differences in the ratio αt/αm. In general, the relationship between the total probability outside the 

Fig. 16. (a) Ratio of Hs return values for HD contours of joint distribution shown in previous figure. (b) Ratio of contour exceedance probability to 
marginal exceedance probability of highest Hs value along contour. 

Fig. 17. Ratio of total exceedance probability, αt , to marginal exceedance probability αm, against αm for IFORM contours defined at exceedance 
probability αm in n = 1,…,5 dimensions. 
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contour and the marginal exceedance probability is likely to be dependent on the shape of the joint distribution. However, as DS and 
IFORM contours are both defined in terms of marginal exceedances, the ratio αt/αm for DS contours is likely to be similar to that for 
IFORM contours in higher dimensions as well. 

5. Implications for the design process 

The previous sections showed that IFORM, DS, ISORM and HD contours that are calculated using the same α-value can lead to 
significantly different design conditions. Further, the marginal return periods of the maximum values of each variable along different 
kinds of contours can easily deviate by a factor of more than 10. Thus, the type of contour used in the design process of a marine 
structure can have an important influence on the assumed environmental loads and consequently on the structure that is being 
designed. As, by definition, ISORM and HD contours are more conservative than IFORM and DS contours, it seems sensible to use these 
conservative contours only when they are required, that is, when the structure of interest has a non-convex failure region. In a design 
project one does not know the exact shape of the failure region beforehand, however, one can often anticipate its approximate shape. In 
the following we consider three simple examples, whose response characteristics are representative of wider classes of structural 
problems. In the first example we consider the response of a single degree of freedom system to sea states, where the use of IFORM or 
DS contours is more appropriate. In the second example, we consider a structure, which responds strongly at two frequencies such that 
the failure region is not convex and IFORM and DS contours are not conservative for estimating extreme responses. Finally, in the third 
example we consider the specification of directional design conditions, where the use of ISORM or HD contours is more appropriate. To 
simplify the examples, it is assumed that the structural responses are deterministic so that it is not necessary to use inflation factors for 
the contours. 

5.1. Example 1: response of a single degree of freedom system to sea states 

Consider the design process of a marine structure whose behaviour can be approximated as a single degree of freedom vibration 
system (see, for example, [3, Chapter 2]). This could be, for example, a vibrating tower [3, pp. 23] or a floating system [41]. Assume 
that a candidate design needs to be evaluated to check whether it fulfills a given reliability target. Suppose that failure is only allowed 
to occur with a return period of 50 years (or more seldom) such that a 50-year environmental contour is constructed to derive a set of 
design conditions. 

We assume that the candidate design responds with the following deterministic response function, proposed in Refs. [2]: 

r
(
hs, tp

)
= a

hs

1 + b
(
tp − tp0

)2 (18)  

where a = 2, b = 0.007 and tp0 = 30 s. The response function peaks at a particular period tp0, which could represent the eigenfre-
quency of the system. In this example, the peak response occurs at a period, which is higher than the wave periods of typical sea states, 
which could represent the heave motions of a spar or surge motions of a tension leg platform [42]. As the response function peaks at a 
single tp value, any response surface and consequently also the failure region will be convex. 

In this example, we assume that the joint distribution of hs and tp at the location of the structure is described by the model presented 
in Section 4.2, with a fixed relationship between tp and tz given by tp = 1.2796tz. The 50-year IFORM, ISORM, DS and HD contours for 

Fig. 18. Comparison of ratio of total exceedance probability, αt , to marginal exceedance probability αm, against αm for DS and IFORM contours in 2 
dimensions. Results for the DS contour are based on the joint distribution given in (14). 

E. Mackay and A.F. Haselsteiner                                                                                                                                                                                   



Marine Structures 75 (2021) 102863

16

this environmental model are shown in Fig. 19 and the position of the highest response along each contour is marked with a cross. The 
highest response along each contour is listed in Table 1 and ranges from 14.5 (IFORM contour) to 18.2 (ISORM contour). 

The true long-term distribution can be calculated using the expression 

FR(x)=
∫∫

r(hs ,tp)≤x

fHs,Tp
(
hs, tp

)
dtpdhs. (19) 

The true 50-year response for this example was calculated as 14.5. Thus, the computed IFORM and DS responses deviate less than 
2% from the true 50-year response, whereas the responses from the HD and ISORM contours are 18% and 26% higher respectively than 
the true 50-year response. 

Suppose that the structure has been optimized with respect to the design conditions that were derived from the 50-year DS contour 
such that a response that exceeds 15 represents failure. The resulting convex failure region would almost touch the IFORM and DS 
contours, but the failure region would overlap with the ISORM and HD contours (Fig. 19). Consequently, if ISORM or HD contours were 
used, the candidate design would need to be changed, either to reduce the response or increase the capacity. 

In this example, the failure region is convex and consequently the probability of failure is less than the DS contour’s probability of 
exceedance, αM. Consequently, using the DS or IFORM contour would be a better choice than using an HD or ISORM contour as 
otherwise unnecessary conservatism would be introduced. 

If the structure has multiple eigenfrequencies, however, the failure region will not be convex and it is not clear whether the ex-
ceedance probability of an DS or an IFORM contour, αm, is greater than the structure’s probability of failure. In these cases, further 
analysis is required to ensure that the probability of failure is below the required value. This problem is considered further in the next 
section. 

5.2. Example 2: bimodal response to sea states 

Suppose that the structure of interest is not a single degree of freedom system, but that it responds strongly at two distinct fre-
quencies. These two frequencies could be the effect of two eigenfrequencies. We assume that the structure responds with a function 
that is the sum of two response functions of the form given in (18): 

r
(
hs, tp

)
= a1

hs

1 + b1
(
tp − te1

)2 + a2
hs

1 + b2
(
tp − te2

)2, (20)  

where a1 = 4, a2 = 1.1, b1 = 0.1, b2 = 0.05, te1 = 25 s and te2 = 12.5 s. These parameter values give a failure region that is concave in 
the area around the highest Hs values on the contours. It will be shown below that in this case, the assumption of a linear failure surface 
in the IFORM and DS contours is non-conservative. Not all bimodal responses result in non-conservative estimates from IFORM and DS 
contours, but such a case is used here to illustrate that special care is required for structures with multi-modal responses. 

Suppose that the structure considered is subject to the same environment as the structure in Example 1 and that we are interested in 
the 50-year response. As the environment is the same, the environmental contours are the same too. Based on these contours, the 50- 
year response is estimated as the largest response along the contour. The estimated responses, listed in Table 2, range from 16.57 
(IFORM contour) to 20.47 (ISORM contour). The true 50-year response was calculated using (19) as 17.00. Thus, in this example, 
response estimators from IFORM and DS contours are not conservative. 

Fig. 20 shows the environmental contours together with a failure surface - assuming that failure occurs when the true 50-year 

Fig. 19. Design of a single degree of freedom system with a sea state environmental contour. The assumed response function peaks at the 
eigenfrequency, tp0 = 30 s. The failure surface would be acceptable if an IFORM or DS contour was used, but not acceptable if an HD or ISORM 
contour were used. 
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response, r = 17.00, is exceeded. The IFORM and DS contours do not touch this failure surface, while the ISORM and HD contours 
overlap with the failure region. Consequently, in this case, a designer who used an IFORM or DS contour could see potential to optimize 
the structure by reducing the structure’s capacity, for example to rcap = 16.7. Such a response capacity, however, would lead to a 
probability of failure greater than the target probability of failure. A structure with a response capacity that is fully optimized to the 
IFORM 50-year response, rcap = 16.57, would have a failure probability that is 64% higher than the target probability of failure. Using 
the responses estimated using ISORM or HD contours, however, would also have unintended consequences: A design with a capacity of 
rcap = 17, which would lead to the intended target probability of failure, would be dismissed and instead a more conservative design 
would be created. 

5.3. Example 3: directional design conditions 

In this example we consider the specification of directional design conditions for the design or assessment of a marine structure. In 
many locations, the severity of wave conditions exhibits a dependence on wave direction. Specifying the design wave height as a 
function of direction can allow the optimisation of an asymmetrical structure. Directional return values are often estimated in discrete 
directional sectors. However, it is becoming more common to estimate extreme value models where the model parameters vary 
smoothly with direction (e.g. Refs. [43,44]). In these cases, environmental contours can be used to define directional design conditions. 

In this example, we use a simple description of the joint distribution of Hs and wave direction, Θ, based on the joint distribution of 
wind speed and direction given in Ref. [45] and studied further in Ref. [46]. Its mathematical description is given in Appendix A. 

When constructing contours for directional distributions it is important to be clear about what coordinate system is used. If IFORM, 
ISORM or DS contours are constructed in the Hs-Θ coordinate system, then the contours will have upper and lower bounds for Θ for any 
directional distribution, which does not make sense from the perspective of structural reliability. Whether HD contours have upper and 
lower bounds on Θ depends on the shape of the joint PDF. The construction of IFORM contours based on applying the Rosenblatt 
transformation in the form Φ(U1) = FΘ(θ), Φ(U2) = FHs |Θ(hs|θ), was discussed in Refs. [45–47]. The IFORM contours presented in these 
works exhibit a discontinuity in the transition between 0 and 2π, due to the upper and lower bounds for θ. 

To address this issue, Vanem et al. [46] proposed deriving contours in terms of the x and y components of significant wave height, 
defined as 

hx = hscos(θ), hy = hssin(θ). (21) 

The joint density function of hx and hy in Cartesian coordinates can be written as 

fHx ,Hy

(
hx, hy

)
= fΘ,Hs (θ, hs)

⃒
⃒
⃒
⃒
∂(hscos(θ), hssin(θ))

∂(hs, θ))
|
− 1

=
fΘ,Hs (θ, hs)

hs
. (22) 

Note that since the Weibull location parameter, γ, is greater than zero in this example, the transformed density function is non- 
singular at the origin since fΘ,Hs (θ, 0) = 0. In the following, all the contours considered are constructed in Hx-Hy space. This means 
that DS contours are based on the assumption that the failure surface is linear in this space. For IFORM contours, the assumed failure 
surface is not necessarily linear in Hx-Hy space, due to the use of the Rosenblatt transformation. However, this is a common feature of 
the IFORM method for any parameter space, as discussed in Refs. [7,11,40]. 

The 1-year IFORM, ISORM, DS and HD environmental contours are shown in Fig. 21(a) together with the 1-year omnidirectional 
return value (assuming that observations are at 3 h intervals as before). As the isodensity contours of the joint distribution are close to 
convex in (hx, hy) coordinates, the DS and IFORM contours are in close agreement, as are the HD and ISORM contours. The HD and 
ISORM contours give maxim values of Hs approximately 1 m larger than the DS and IFORM contours. The IFORM and ISORM contours 

Table 1 
Structural responses from different contour methods for a single degree of freedom system.  

Method 50-year response Sea state causing 50-year response (hs, tp)  

IFORM contour 14.51 15.0 m, 17.6 s 
DS contour 14.55 15.0 m, 17.7 s 
ISORM contour 18.23 17.1 m, 18.8 s 
HD contour 17.13 16.6 m, 18.4 s 
all sea states approach 14.53 –  

Table 2 
Structural responses from different contour methods for a structure with a bimodal response function.  

Method 50-year response Sea state causing 50-year response (hs, tp)  

IFORM contour 16.57 15.2 m, 17.4 s 
DS contour 16.63 15.2 m, 17.5 s 
ISORM contour 20.47 17.0 m, 18.9 s 
HD contour 19.10 16.6 m, 18.4 s 
all sea states approach 17.00 –  
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exhibit a small ridge at around 90◦. This is a result of the use of the Rosenblatt transformation. The location of the ridge is dependent on 
the order of variables used in the transformation, as illustrated in Fig. 21(b). 

Note that marginal probabilities in Cartesian Hx − Hy space do not correspond to marginal probabilities of Hs. The set of points with 
Hs ≤ r is contained in the set of points with Hx ≤ r (see Fig. 22). Since this is true under any rotation of the axes, the maximum radius of 
a DS contour constructed in Hx − Hy space will be less than the omnidirectional return value. In this case the 1-year omnidirectional 
return value is 8.65 m and the maximum Hs on the DS contour is 8.58 m. The maximum Hs on the IFORM contour is slightly higher, at 
8.59 m, due to the effects of the Rosenblatt transformation, discussed in Section 3.1. 

Suppose that a structure has a deterministic omnidirectional response and is designed so that it fails if the wave height exceeds the 
maximum value along a T-year IFORM or DS contour. Since the T-year omnidirectional return value of Hs is greater than the maximum 
value of Hs along the contour, the structure will have a higher failure probability than intended. Now suppose that the omnidirectional 
structure is designed using the omnidirectional return value at exceedance probability α, denoted hα, so that the failure surface is 
located at hα and is independent of direction. In this case the probability of failure will be equal to α, by definition, since hα is the value 
of Hs that is exceeded with probability α, independent of direction. If the structure is asymmetric, and designed so that the failure 

Fig. 20. Sea state environmental contours for the design of a structure with a bimodal response. The assumed response function peaks at te1 = 25 s 
and at te2 = 12.5 s such that the failure region is not convex. The failure surface shown is based on the capacity that causes the failure probability to 
become exactly α (rcap = 17). If designers were to use the IFORM or DS contour they might design a structure with rcap < 17, while designers using 
the ISORM or HD contour would be required to increase the structure’s capacity above rcap = 17. 

Fig. 21. (a) 1-year environmental contours for joint distribution of Hs and wave direction and 1-year omnidirectional return value. IFORM and 
ISORM contours based on transformation in terms of conditional distribution Hy

⃒
⃒Hx. (b) Effect of the order of variables used in the Rosenblatt 

transformation used to construct the IFORM contour. 
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surface is located at a value greater than or equal to hα in each direction, then the probability of failure will be less than or equal to α. So 
the use of omnidirectional criteria gives the target failure probability, but may lead to a less efficient design as the potential to optimize 
the design with respect to direction is not exploited. 

Now suppose that an asymmetric structure is optimized based on directional extreme conditions from an environmental contour. 
For example, the stiffness of a fixed structure in a particular direction could be optimized with respect to direction or similarly the 
mooring response of a floating structure could be optimized to allow larger responses in directions where the wave conditions are less 
severe. 

Consider a hypothetical marine structure that is fully optimized to directional values of Hs, such that failure occurs immediately if 
the directional value of Hs is exceeded. In such a case we can see from the results in Sections 4.1 and 4.2 that if the directional values of 
Hs are specified based on IFORM or DS contours then the failure probability will be approximately 10 times higher than the exceedance 
probability of the contour. So for this application the use of IFORM or DS contours is not conservative. A similar argument was made by 
Forristall [48]. He noted that if a structure is designed based on directional return values in discrete sectors, each at exceedance 
probability α, then the failure probability of the structure is greater than α. The argument made here is analogous, although a 
distinction should be made between directional IFORM and DS contours and directional return values. The former are continuous with 
direction, but their interpretation in terms of exceedance values of Hs is less clear. In contrast, directional return values have a clearer 
interpretation, but are discontinuous with direction and are dependent on the sector width used (see Appendix B). 

ISORM and HD contours at exceedance probability α both have a total exceedance probability of α. Therefore, if the hypothetical, 
fully optimized structure is designed using directional criteria derived from ISORM or HD contours then the failure probability will be 
equal to the contour exceedance probability (under the assumption of a deterministic response dependent on Hs and Θ only). 

The ISORM and HD contours as well as the omnidirectional return value contour all enclose a region of parameter space containing 
total probability 1 − α. From Fig. 21 it is evident that the ISORM and HD contours offer the potential for considerable directional 
optimisation compared to the omnidirectional contour, but at the cost of requiring a greater capacity in the sector between 300∘ and 
330∘. Feld et al. [49] note that there are infinitely many ways to define directional criteria which achieve the target reliability for the 
structure. The use of directional return values specified in discrete sectors has the disadvantage that the return periods used in each 
sector are dependent on the sector width, with the use of smaller sectors requiring larger return periods in order to maintain the desired 
reliability (see Appendix B). This is mainly a problem for communication of results, rather than a problem for the optimisation of a 
structure. Since it may not be immediately clear that directional return values at a given return period are dependent on the sector 
width, there has been some resistance to the use of directional design criteria with different return periods to the omnidirectional 
design value. The use of ISORM or HD contours in this context provides a set of directional design criteria with a definition that is easier 
to interpret. As discussed above, there is no fixed relation between the largest values of Hs on environmental contours defined in hx-hy 

parameter space and return values of Hs. However, since directional return values are dependent on the width of directional sector 
used, it could be argued that directional return values are somewhat ambiguous quantities anyway. One way to interpret the omni-
directional return value is that it is the contour with the smallest radius containing probability 1 − α. Similarly, the HD contour defines 
the smallest area containing probability 1 − α. The interpretation of the ISORM contour is less clear due to the use of the Rosenblatt 
transformation. 

In reality no structure will be fully optimized in each direction. Instead, there could be a single direction where exceeding the 
directional values leads to failure, but in other directions a non-zero margin exists until failure occurs. In such a case the probability of 

Fig. 22. The set of points with Hs ≤ r (red hatched area) is contained in the set of points with Hx ≤ r (blue hatched area). The maximum Hs on a T- 
year DS contour is therefore smaller than the T-year omnidirectional Hs return value. For the red hatched area to contain the same probability as the 
blue hatched area, the radius r must be greater than the bound on hx. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 
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failure of a structure that is designed based on design conditions from HD and ISORM contours will be smaller than the target failure 
probability. Consider the simple example that the structure is designed to have a smaller response in the x’-direction than the y’-di-
rection (where x’ and y’ represent a local coordinate system of the structure). In this example we consider the following simple 
response function 

r
(
hx’, hy’

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ah2
x’ + bh2

y’

√

, (23)  

where a = 1.4 and b = 5. Or expressing this in the global coordinates, x, y, which are rotated by an angle φ to the local coordinate 
system: 

r
(
hx, hy

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a
(
hxcosφ + hysinφ

)2
+ b

(
− hxsinφ + hycosφ

)2
√

. (24) 

Based on the distribution of Hs and Θ we are considering here, suppose that the structure is designed such that its response per unit 
wave height is smallest in the direction where the highest waves occur, such that φ = 315∘. The 1-year response of this structure was 
calculated using the all sea states approach and using the four environmental contour methods. The results are listed in Table 3. The 
response surface corresponding to (24) is shown in Fig. 23, where the response value corresponds to the 1-year response estimated 
using the all sea states approach. 

As expected, the IFORM and DS contours underestimate the 1-year response, since the methods are based on the assumption that 
the failure region is convex in Hx-Hy space. Conversely, the ISORM and HD contours overestimate the 1-year response. The under-
estimation is approximately 3–5% for the IFORM and DS contours and the overestimation is approximately 7–16% for the ISORM and 
HD contours. 

Suppose that the structure is designed such that its capacity is exactly the 1-year response estimated by a particular contour method 
such that, for example, in the case that an IFORM contour is used the capacity is 10.33, but if an ISORM contour is used the capacity is 
12.37. In this case the probability of failure for IFORM and DS contours are roughly double the target probability of failure and the 
probability of failure for ISORM and HD contours are lower than the target probability of failure (roughly 20 and 4 times lower, 
respectively). So in this example, the use of IFORM or DS contours would be non-conservative, whilst using ISORM or HD contours 
would achieve the target reliability. 

The directional response function given in (24) is not intended to represent a particular structure, but is intended to illustrate the 
differences between the various contour methods considered. The response of a particular structure will fall somewhere between the 
two limiting cases considered above: (i) a fully optimized structure whose failure surface coincides with the environmental contour 
that was used to design it; and (ii) an omnidirectional structure whose capacity is designed to withstand the highest response along the 
contour. Table 4 lists the failure probabilities of these two structures when designed using each contour method. Interpreting these 
cases as the boundaries of the set of reasonable direction-sensitive structures, for the joint distribution of Hs and Θ considered here, a 
structure designed using an IFORM or DS contour will have a probability of failure between ca. 1.1 and 9.2 α and a structure designed 
using an ISORM or HD contour will have a probability of failure between ca. 0.07 and α. 

6. Summary and conclusions 

The differences between environmental contours defined in terms of marginal and total exceedance probabilities have been 
explored. A summary of the properties of the four contour methods considered is given in Table 5. The ratio between the marginal 
exceedance probability of the largest value of each marginal variable along a contour and the total exceedance probability of the 
contour depends on the contour exceedance probability, the number of variables and the shape of the joint distribution. For IFORM and 
ISORM contours the total exceedance probability is independent of the joint distribution, but the marginal exceedance probability of 
the largest values of each variable along the contour depends on the order in which variables are used in the Rosenblatt transformation. 
The marginal return period of the largest marginal value along an ISORM contour in 2D, is approximately 10 times higher than the 
contour return period, whereas in 4D the marginal return period of the largest marginal value along an ISORM contour can be more 
than 200 times higher. 

The relationship between marginal and total exceedance probabilities for direct sampling contours is dependent on the shape of the 
joint distribution of variables. However, in the case that the joint distribution has convex isodensity contours, the relationship between 
marginal and total exceedance probabilities is approximately equal to that for IFORM contours. 

Table 3 
Structural responses from different contour methods for a system whose response depends on wave direction, with response given by (24). Pf is the 
probability of failure of a structure that is designed to have a capacity of the 1-year response.  

Method 1-year response Sea state causing 1-year response (hs, θ)  Pf  

IFORM contour 10.33 5.8 m, 91◦ 1.80 α 
DS contour 10.20 8.6 m, 311◦ 2.28 α 
ISORM contour 12.37 7.0 m, 91◦ 0.05 α 
HD contour 11.49 9.7 m, 311◦ 0.23 α 
All sea states approach 10.7 – α  
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For highest density contours, the marginal exceedance probability of the largest marginal value along the contour is not in fixed 
relationship with the total exceedance probability, but depends on the shape of the joint distribution of variables. In general we have 
cα > xα for HD contours in two or more dimensions. 

The effect this has on structural reliability calculations is problem specific, with the impact depending on both the joint distribution 
of variables and the response function. In particular, the appropriate choice of contour is dependent on the shape of the failure surface. 
In the example for a simple one-degree-of-freedom structure, the failure region was convex and the use of IFORM or DS contours was 
appropriate. In this case, the 50-year IFORM and DS contours gave an estimate of the 50-year response within 2% of the true 50-year 
response, whereas the HD and ISORM contours gave estimates that were 18% and 26% higher respectively. Clearly, this can have 
significant implications for the design of a structure. In the second example, where the structure had a bimodal response, the estimates 

Fig. 23. 1-year environmental contours for joint distribution of Hs and direction, with failure surface for structure with response given by (24). Note 
that the IFORM and ISORM contours have their highest response at the small ridge around 90◦, which is an effect of the order of variables used in the 
Rosenblatt transformation (Fig. 21 b). 

Table 4 
Structural responses from different contour methods for the two limiting cases of directionally optimized structures: A hy-
pothetical structure that is fully optimized to wave direction and a structure whose response is independent of wave direction 
(computed by setting a = b in (24)). Pf is the probability of failure of a structure that is designed to have a capacity of the 
environmental contour method’s estimated 1-year response.  

Method Pf of fully optimized structure  Pf of omni-directional structure  

IFORM contour 9.16 α (see (17)) 1.16 α 
DS contour ca. 9 α (similar to IFORM) 1.11 α 
ISORM contour α 0.11 α 
HD contour α 0.07 α  

Table 5 
Summary of properties of environmental contours.  

Property IFORM DS ISORM HD 

Defining exceedance probability Marginal Marginal Total Total 
Approximation to failure region Linear boundary in U- 

space 
Linear boundary in X- 
space 

Surrounds 
contour 

Surrounds 
contour 

Contour shape Concave or convex Convex Concave or 
convex 

Concave or 
convex 

Contour is uniquely defined Noa Yes Noa Yes 
Marginal exceedance probabilities independent of joint 

distribution 
Nob Yes Nob No 

Total exceedance probability independent of joint 
distribution 

Yes No Yes Yes  

a Contour depends on order of variables in Rosenblatt transformation. 
b Marginal exceedance probability is only fixed for conditioning variable in Rosenblatt transformation. 
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of the 50-year response from the IFORM and DS contours was no longer conservative, as the structure’s failure region was concave in 
the area around the largest values of Hs on the contours. Whilst IFORM and DS contours may be conservative for some structures with 
multi-modal responses, the example illustrates that special care is needed for these cases. 

The third example considered the specification of directional design conditions. It was argued that it does not make sense to define 
contours using Hs and Θ as orthogonal coordinates on Cartesian axes, since this results in contours with upper and lower bounds on 
direction. Instead, it makes more sense to define directional contours in terms of the x and y components of Hs. In this coordinate 
system the failure region of most marine structures will not be convex. In this case, the use of DS or IFORM contours results in non- 
conservative design conditions, whereas HD or ISORM contours maintain the intended reliability. 

The results presented in this work emphasise the importance of having some understanding of the shape of the failure surface of a 
structure in the coordinate system that the contours are constructed in, so that the appropriate choice of environmental contour can be 
made. 

Data availability 

The analysis of the examples presented in Section 5 can be reproduced by running the MATLAB files Example1and2.m and 
Example3.m that are available at the GitHub repository https://github.com/ahaselsteiner/2020-note-on-contours. Matlab imple-
mentations of the IFORM, ISORM, DS and HD methods are available in the software package compute-hdc that is available at https:// 
github.com/ahaselsteiner/compute-hdc. 
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Appendix A. Directional wave distribution in Example 3 

The joint density function of wave height and direction considered in Example 3 is written as a hierarchical model: 

fΘ,Hs (θ, hs)= fΘ(θ)fHs |Θ(hs|θ). (A.1) 

The marginal distribution of wave direction is expressed as a mixture of von Mises distributions, 

fΘ(θ)=
∑n

i=1
wifi(θ), (A.2)  

where wi ∈ [0,1] are weights and 
∑n

i=1wi = 1. The PDF of the von Mises distribution is 

fi(θ) =
exp(κicos(θ − μi))

2πI0(κi)
, (A.3)  

where I0 is the zero-order modified Bessel function of the first kind, κi is a concentration factor and μi is the location parameter. The 
model for Hs conditional on direction is a three-parameter Weibull distribution (13), with parameter dependence on direction given in 
terms of a Fourier series: 

λ(θ) = a0 +
∑

j=1

m

ajcos(jθ) + bjsin(jθ), (A.4)  

k(θ)= c0 +
∑

j=1

m

cjcos(jθ) + djsin(jθ). (A.5) 

The model presented in Refs. [45] uses m = 8 harmonics for the Fourier series. In this example we assume the Weibull location 
parameter is constant at γ = 0.5. The other distribution parameters are defined in Tables A1 and A.2. 
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Table A 1 
Parameters for distribution of wave direction.  

j wj  μj  κj  

1 0.21 2.10 0.74 
2 0.79 5.54 13.11   

Table A 2 
Fourier coefficients for distribution of Hs conditional on wave direction.  

j aj  bj  cj  dj  

0 1.875  1.910  
1 0.345 − 0.140 0.240 − 0.130 
2 − 0.210 − 0.820 − 0.080 − 0.170 
3 − 0.160 − 0.200 − 0.010 − 0.030 
4 − 0.265 0.095 − 0.110 0.030 
5 − 0.090 0.110 0.0004 0.003 
6 0.070 0.070 0.060 0.020 
7 0.030 0.020 0.060 0.020 
8 0.030 − 0.015 0.004 − 0.010  

Appendix B. Directional return values 

Forrsitall’s argument about the use of directional design values [48] can be summarised as follows. Suppose we have M inde-
pendent observations of Hs per year with CDF FHs . The T-year omnidirectional return value, HT , is defined as the solution of 

1 − FHs (HT)=
1

MT
. (B.1) 

Suppose also that the direction of each observation is random and uniformly distributed in [0, 360∘] and that the distribution of Hs is 
independent of direction. The T-year return value in a directional sector of width d degrees, denoted Hd

T, is the solution of 

1 − FHs

(
Hd

T

)
=

1
mT

, (B.2)  

where m = M d/360. Since m < M for d < 360, the exceedance probability of Hd
T is greater than the exceedance probability of HT and 

hence Hd
T < HT . So when the distribution of Hs and storm occurrence rate are constant with direction, the T-year return values in a 

directional sector is less than the T-year omnidirectional return value and T-year directional return value decreases as the sector width 
decreases. 

Clearly, in this situation, a structure designed using T-year directional return values will have a lower reliability than a structure 
designed using the T-year omnidirectional return value. Therefore, to ensure the overall reliability remains the same when using 
directional criteria, the directional return periods must be increased so that the probability that the design criteria are exceeded in any 
directional sector (i.e. the sum of exceedance probabilities in each sector) is equal to the target probability of failure. 

This argument extends to the case where both the distribution of Hs and the occurrence rate varies with direction. For further 
details see Ref. [48,49]. 
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