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In this article, we consider the spectral behaviour of turbulence-driven power fluctuations
for a single horizontal-axis turbine. To this end, a small-scale instrumented axial-flow
hydrokinetic turbine model (diameter= 0.724 m) is deployed in the long water flume
situated in the laboratory facilities of IFREMER in Boulogne-sur-Mer, France, and
synchronous measurements of the upstream velocity and the rotor are collected for
different tip-speed ratios. The study confirms previous findings suggesting that the power
spectra follow the velocity spectra behaviour in the large scales region and a steeper
power law slope behaviour (−11/3) over the inertial frequency sub-range. However, we
show that both the amplitude of the power spectra and low-pass filtering effect over the
inertial sub-range also depend on the rotor aero/hydrodynamics (e.g. dCL/dα) and the
approaching flow deceleration and not solely on the rotational effects. In addition, we
present a novel semi-analytical model to predict the dominant blade-passing frequency
harmonics in the high-frequency regime using the rotationally sampled spectra technique.
For all calculations, the distortion of incoming turbulence is taken into account.
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1. Introduction

Flow unsteadiness is a major factor characterising both wind and tidal-stream energy
production. For example, dealing with wind resource variability remains one of the
biggest challenges in wind energy research, as the lack of long-term predictions can affect
production, storage and distribution of energy (van Kuik et al. 2016; Veers et al. 2019).
On the other hand, large-scale variations in tidal channels caused by ebb and flood are
highly predictable. Yet, site-specific and regional-scale flow phenomena can introduce
flow velocity variations beyond the tidal cycle and increase flow unsteadiness upstream
of tidal turbines (Adcock et al. 2012). At rotor scale, flow unsteadiness is characterised by
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small-scale, turbulence-driven fluctuations. The level of turbulence intensity within tidal
channels has been reported to be as high as 15 to 20% (Grant et al. 1962; Heathershaw
1979; Osalusi et al. 2009b,a), while analogous wind energy site measurements have
reported values closer to 8-12% (Hansen et al. 2012; Milan et al. 2013). To understand the
effect of turbulence on wind or tidal-stream power output variability, numerous studies
have attempted to quantify the impact of upstream turbulence on a single horizontal-
axis turbine (Chamorro et al. 2013; Tobin et al. 2015; Chamorro et al. 2015; Payne et al.
2018) or turbine arrays (e.g. wind farms) (Stevens & Meneveau 2014; Stevens et al. 2016;
Bossuyt et al. 2016, 2017; Bandi 2017; Tobin & Chamorro 2018). Moreover, indirect
measurements from the electrical power output for more than one wind farm (Apt 2007;
Katzenstein et al. 2010; Vigueras-Rodŕıguez et al. 2010) have also been obtained and
studied. These works have shown that both the individual and aggregate array power
output are strongly modulated by small-scale turbulence and larger coherent structures.
In particular, the timescales and magnitude of power output fluctuations that can both
be compactly described by the respective power spectra density functions of the power
fluctuations (power spectra) have shown to exhibit a behaviour that deviates from that
of the onset velocity spectra.

Studies of a single horizontal-axis turbine (HAT) interacting with onset turbulence have
shown that the rotor behaves as a low-pass filter by ignoring the small-scale fluctuations
and responding only to the larger coherent structures (Chamorro et al. 2015; Tobin et al.
2015; Anvari et al. 2016). To this end, Tobin et al. (2015) proposed a power law with a
slope of −11/3 to be more appropriate over the inertial sub-range, where the incoming
velocity fluctuates according to the well-known −5/3 power law of isotropic turbulence
(Kolmogorov 1941; von Kármán 1948). Additionally, they attributed the resulting −2
slope difference between the velocity and power fluctuations to the rotational motion
of the blades, a behaviour that was later confirmed by the spectral behaviour of a
different rotating structure (rotating plate) (Jin et al. 2016). Other studies have also
reported an excess of energy in the narrow band around the blade-passing frequency
(BPF) fb = NbΩ/(2π), where Ω is the rotor angular speed and Nb the number of
blades (Chamorro et al. 2013; Payne et al. 2018). On the other hand, power fluctuations
aggregated over arrays of turbines were found to exhibit a behaviour much closer to that
of the velocity fluctuations. Apt (2007) considered a small array of six turbines and found
a power law slope of −5/3 over the low-frequency regime and a −7/2 scaling over the
higher frequencies of the inertial sub-range. For larger turbine clusters however, Stevens
& Meneveau (2014); Bossuyt et al. (2016) found that the power law of −5/3 is sustained
over the inertial sub-range whereas for the same frequency range, Liu et al. (2017) and
Bossuyt et al. (2017) found a power-law behaviour of f−11/3, and between f−5/3 and
f−2, respectively. Even more interesting, the same studies found that the aggregate
power spectra exhibit characteristic peaks at integer multiples of the advective frequency
(AF) fa = 2π/Ta, where Ta corresponds to the mean velocity-driven travel time between
two adjacent in-line turbines. To explain the existence of these peaks Bossuyt et al.
(2017), first and later Tobin & Chamorro (2018); Tobin et al. (2019) used the random-
sweeping hypothesis of Kraichnan (1964) and Tennekes (1975) following previous studies
that utilised the same theory to obtained spatio-temporal spectral correlations in the
logarithmic layer of wall turbulence (Wilczek et al. 2015a,b).

In this study, we present a novel semi-analytical model for the power spectra of a
single HAT. In particular, we consider both the turbulence immediately upstream of
the rotor and the forces that it induces on the rotor. First, in the case of the inflow
velocity field, the turbulence is distorted, as was recently shown by Graham (2017);
Milne & Graham (2019) and Mann et al. (2018). This is an effect of flow being blocked
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and distorted by the projected thrust force, thereby leading to a pronounced decrease
in the spectral amplitude of the approaching velocity over the low-frequency regime.
Second, the effect of low-pass filtering that is observed in the inertial sub-range as
well as the energy amplification around the blade-passing frequency are both due to
rotational effects and will be calculated using the rotationally sampled spectra (RSS)
technique (Connell 1982). To validate the proposed model, a series of experiments
conducted in the water flume in the Institut Français de Recherche pour l’Exploitation
de la MER (IFREMER) at Boulogne-sur-Mer, France are presented. The experiments
consider synchronous measurements of the approaching velocity field at different locations
upstream of the rotor and the respective rotor turbine’s generated torque.

The remaining sections of this paper are organised as follows: Section 2 introduces
the underlying theory of turbulence distortion, analytical derivation of the linearised
relationship between the velocity and power fluctuations and the application of RSS
analysis to derive a rotor-velocity cross-correlation function and the power spectral
density function of the power fluctuations for a three-bladed turbine. In Section 3, we
present the experimental setup as well as the methods used to obtain synchronised tur-
bulence/turbine measurements are presented. A parametric study for our semi-analytical
model is presented in Section 4 while an extensive comparison between the experimental
data and the model predictions is provided in Section 5. Finally, a brief summary and
discussion of our main findings as well as the limitations of our model are presented in
Section 6.

2. Problem definition

We consider a spatially uniform velocity field, u∞ = (u1∞, u2∞, u3∞), approaching
a horizontal-axis turbine with diameter D (see figure 1). By applying Reynolds de-
composition to the uniform velocity field, we obtain a mean (Ui∞) and a fluctuating
part, u′i∞. As the incoming flow approaches the rotor, the fluctuating velocity field gets
distorted, thanks to the combined effects of the rotor’s blockage and projected mean
strain (Graham 2017; Milne & Graham 2019), thus altering the incoming mean flow and
turbulence characteristics that eventually reach the rotor. The distorted velocity field
at some location, x = (x1, x2, x3), upstream the rotor is denoted by u = (u1, u2, u3).
The interaction of the distorted velocity field with the rotor system thereafter leads
to time-varying power generation that can be accurately calculated through the rotor’s
torque, Q(t), so that P (t) = Q(t)Ω. Here, we have assumed that the turbine rotates with
a constant angular velocity, Ω. In the absence of time-dependent torque measurements,
however, the time-varying power output of a single turbine can be calculated based on the
inflow velocity, as the two are inherently related. A commonly used approach to calculate
the power fluctuations from the approaching velocity field is to utilise the steady-state,
disk-averaged expression,

P (t) =
1

2
ρCPAu

3
1∞(t) (2.1)

where ρ is the fluid density, CP is the mean power coefficient and A = πR2 is the rotor
area. Such an approach has been successfully employed by Bossuyt et al. (2016, 2017) for
the spatially-averaged power fluctuations over large wind farms. Because equation (2.1)
is derived from steady-state analysis and represents disk-averaged quantities, it is not
expected to be able to capture small-scale fluctuations and its true effect on the power
output. Equation (2.1) can be more suitably used for power output calculations of a rotor
interacting with larger coherent structures (typically with length scales greater than one
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Figure 1: Schematic representation of upstream turbulence approaching a horizontal-axis
turbine and the transformation process between velocity and power fluctuations. Figure
adapted from Tobin et al. (2015).

Figure 2: Comparison between measured power fluctuations and estimated ones based
on the mean-power formula. Left: Time series of the power fluctuations with a zoomed-in
plot showing the large discrepancies over short timescales. Right: Power spectral density
functions of power fluctuations with annotations for the respective scaling law slopes and
spectral content over the BPF.

rotor diameter). Nonetheless, the turbine power time series from these two approaches
may be used to calculate the power spectra via the Fourier transform of the signal’s
autocovariance function 〈P (t)P (t+ τ)〉 as,

SP (f) =

∞∫
−∞

〈P (t)P (t+ τ)〉e−i2πfτdτ, (2.2)

where 〈∗〉 denotes the expected value and f the frequency in (Hz). Using experimental
data from this study for a single, optimally operated red (based on the rotor’s tip-speed
ratio λ = ΩD/2U1∞), three-bladed, horizontal-axis turbine, we find large discrepancies
in both the estimated power fluctuations and power spectra between the “disk-averaged”
and torque-based estimations. The “disk-averaged” calculations are done using the
turbine-synchronous instantaneous upstream velocity, u(t) at x1 = −D (one diameter
upstream the rotor), and then shifted in time according to Taylor’s frozen turbulence
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hypothesis (∆x = −U1∞∆t). On the other hand, the torque-based calculation uses the
time-averaged but nearly-constant rotational speed, Ω, and the experimentally measured
instantaneous turbine torque. The comparison of these two methods reveals discrepancies
between the two approaches, which are highlighted in figure 2. The two approaches appear
to differ significantly over short timescales, with the “disk-averaged” formula failing to
reproduce both the spectral filtering and spectral amplification over the inertial and BPF
regimes, respectively. In fact, the two approaches agree well only for the larger timescales
(low-frequency regime). To address these discrepancies, we employ standard analytical
tools from turbulence theory and aerodynamics and propose a novel semi-analytical
model, which accurately captures the spectral behaviour of the power fluctuations and
reveals the underlying mechanisms that affect it. For our analysis, we shall assume that
the rotor is always aligned with the mean incoming flow, U2∞ = U3∞ = 0, as well
as that the velocity fluctuations, u′j = uj − Uj , can be best described by isotropic
and homogeneous turbulence in the far-upstream velocity fields. Finally, any aeroelastic
effects of the rotor blades and other supporting structures will be neglected.

2.1. Distortion of the approaching turbulence upstream the rotor

As free-stream turbulence approaches the rotor, it becomes distorted as it gets sub-
jected to the mean velocity strain (vorticity distortion) and the rotor’s blockage effect.
In a recent study, Graham (2017) applied the rapid distortion theory of Batchelor
& Proudman (1954) to a general length-scale turbulence approaching the rotor and
calculated the distorted spectra of the streamwise velocity. Their study concluded that
by considering only the turbulent vorticity distortion effect and for a small turbulence
integral length scale to rotor diameter ratio L1∞/D the magnitude of the large-scale’s
fluctuations can be amplified. A subsequent analysis by Milne & Graham (2019), however,
considered both effects (blockage and vorticity distortion) by decomposing the streamwise
fluctuations into a rotational and irrotational velocity field (Helmholtz decomposition).
They showed that in turbulent flows characterised by larger integral length scales, the
blockage effect dominates, resulting in a substantial attenuation of the low-frequency
components. Here, we argue that turbulence-to-rotor interactions are most commonly
characterised by large integral length scales, ignore vorticity distortion and make all of
our consequent analysis by only considering the rotor’s blockage distortion effect. To
that extent, we postulate that the root mean square (r.m.s) of the upstream velocity

fluctuations,

√
u′21 , can be adequately calculated by analogy to the upstream mean

velocity field, U1 = (1− afs(x1))U1∞,√
u′21 =

√
u′21∞

(
1− afs(x1)

)
(2.3)

where fs(x1) represents a dimensionless mean perturbation velocity function at a distance
x1 upstream the rotor, and a the axial induction factor. This assumes that the steady flow
theory can be applied to the unsteady flow components in turbulence for low frequencies
similar to Mann et al. (2018). To approximate fs, we shall make use of the actuator disc
solution of Conway (1995),

U1(x1) = U1∞

[
1− a

(
1 +

x1/D√
(x1/D)2 + 1/4

)]
, x1 < 0 (2.4)
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Figure 3: Numerical solution of the velocity fluctuations spatial shift distance, χ, by the
mean flow, U1, as a function of time lag, τ . Assuming a constant upstream velocity, U1∞,
the solution yields the standard, χ(τ) = −U1∞τ . Both the spatial shift, χ, and time lag,
τ , are presented in an non-dimensionalised form.

and calculate the axial induction factor through the rotor’s thrust coefficient, CT , a =
1/2(1−√1− CT ), while,

fs(x1) = 1 +
x1/D√

(x1/D)2 + 1/4
, x1 < 0. (2.5)

Furthermore, we may also define a distortion factor, γ as,

γ =

√√√√ u′21
u′21∞

=
U1

U1∞
, (2.6)

and thereupon the one-dimensional, streamwise, auto-correlation function, R11 =
〈u′1(x1, t + τ)u′1(x1, t)〉, by considering both the local distortion factor and the shifted
coordinates,

〈u′1(x1, t)u
′
1(x1, t+ τ)〉 = γ2〈u′1∞(x1 − χ(τ), t)u′1∞(x1 − χ(τ), t+ τ)〉 (2.7)

where χ(τ) is the travel distance (spatial shift) of turbulence by the local mean velocity.
The spatial shift function, χ(τ), obeys the following equation,

dχ(τ)

dτ
+ aU1∞(χ)

χ/D√
(χ/D)2 + 1/4

= (1− a)U1∞ (2.8)

which is a first-order nonlinear ordinary differential equation (ODE) that we solve here
numerically using the explicit 4th order Runge-Kutta (RK4) method. The solution is
shown in figure 3 for different axial induction factor values: a = 0.1, 0.3 and 0.4 together
with the undistorted solution, a = 0. From the auto-correlation function we may also
obtain the velocity spectra through a Fourier transform so that,

S11(f) = γ2S11∞(f) (2.9)

a relationship between the distorted, S11(f), and undistorted spectra, S11∞(f), which
agrees well with Mann et al. (2018) for below-rated conditions (da/dU1∞ = 0). Finally,
for all of our subsequent calculations of both the far-upstream undistorted and near-rotor
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distorted velocity spectra, we shall use the von Kármán spectrum model,

S11(f) = γ2
4u′21∞L1∞/U1∞

[1 + 70.8(fL1∞/U1∞)2]5/6
. (2.10)

Note that for x1 → −∞, γ → 1 and thus the far upstream undistorted spectrum is
restored.

2.2. Relating power to velocity fluctuations: A lift force linearisation approach

To relate the generated torque to the rotor-incident velocity fluctuations, we make
use of the blade-element momentum (BEM) theory. Again, we shall ignore turbulence
vorticity distortion and base our prediction of the fluctuating forces on a quasi-static
model derived from BEM theory using the velocity fluctuations at the rotor. We start by
considering an azimuthally-averaged rotor disc consisting of blade elements which exhibit
negligible drag force and negligible three-dimensional behaviour. The sectional lift force
per unit width on the blade element at radius r is then calculated as,

L(r) =
1

2
ρCLc(r)W

2 (2.11)

where W =
√

(Ωr)2 + [U1∞(1− a)]2 is the quasi-steady velocity relative to the blade
element, CL is the lift coefficient, c(r) is the blade element chord size, and Ω is the
rate of rotation. Assuming a “frozen wake” for the turbine, W does not change with the
streamwise velocity fluctuations; therefore, we may calculate the rate of change of the
lift force by the velocity fluctuations as,

dL(r)

du′1
=

1

2
c(r)ρW 2 dCL

dα

dα

du′1
. (2.12)

The “frozen wake” assumption also allows to estimate the angle of attack α via

α+ β = arcsin

(
U1∞(1− a) + u′1

W

)
, (2.13)

where β is the blade pitch angle (considered constant) and a is the axial induction
factor. Equation (2.13) allows us to compute dα/du′1 = 1/(Ωr). Note here that to derive
the previously mentioned expression, no assumption about the magnitude of α + β has
been made (e.g. small angle assumption), but only that u′1/W � 1. Using the earlier
expression, we may compute an expression for the lift force fluctuations,

L′(r) = u′1
dL(r)

du′1
=

1

2
ρ
W 2

Ωr
c(r)

dCL
dα

u′1. (2.14)

Here, we have also linearised the lift gradient, such as dL/du′1 = L′/u′1. Subsequently,
the blade-element torque contribution may be calculated via

Q′(r) = NbL
′(r)r sinφ =

Nb
2
ρ
W 2

Ωr
c(r)r

dCL
dα

sinφ u′1 (2.15)

where φ = α+β is the angle that the velocity acts relative to the plane of rotation, such
that

sinφ =
U1∞(1− a) + u′1

W
(2.16)

allowing to redefine the blade-element torque as,

Q′(r) = NbL
′(r)r sinφ =

Nb
2
ρ

dCL
dα

U1∞(1− a)W

Ω
c(r)u′1 +O(u′1

2
) (2.17)
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where a = 1/2(1−√1− CT ) and Nb = 3 correspond to the number of rotor blades. The

second right-hand-side term, O(u′1
2
), will be dropped from the above expression as a

higher-order small-remainder term. Thus, the blade-element (radial) contribution to the
rotor’s power fluctuations may be computed equal to,

P ′(r) =
3

2
ρ(1− a)2

dCL
dα

U2
1∞c(r)u

′
1

√
λ∗(r)2 + 1, (2.18)

where λ∗(r) = Ωr/U1∞(1 − a) is the local radius tip-speed ratio. The respective power
fluctuations’ variance can now be calculated as,

σ2
P =

(
3

2
ρ(1−a)2

dCL
dα

U2
1∞

)2 R∫
0

R∫
0

u′1(r1)u′1(r2)c(r1)c(r2)
√
λ∗(r1)2 + 1

√
λ∗(r2)2 + 1dr1dr2.

(2.19)
To calculate the power variance from (2.19), the velocity cross-correlation u′1(r1)u′1(r2)
needs to be known a priori for all two-point combinations. A technique to obtain an
expression for u′1(r1)u′1(r2) will be presented in Section 2.3 using rotationally-sampled
spectra. However, what is worth noting here, is that the magnitude of the power
fluctuations depends on geometric (e.g. chord size), rotational (tip-speed ratio) as well
as aero/hydrodynamic characteristics (lift slope) of the rotor.

2.3. Rotationally-sampled spectra

The method of rotationally-sampled spectra (Connell 1982) will be used to provide a
link between the cross-correlation of two rotating points (at different radii) and of an
upstream fixed point auto-correlation function. The starting point of our derivation is
to introduce the cross-correlation functions, Rij(s, τ), between two points at distance s
apart. We start by assuming local isotropy and homogeneity, considering the velocity cor-
relation tensor, Rij(s) (von Kármán 1948; Batchelor 1959), and calculate the streamwise
velocity correlation as,

R11(s) = F (s)

(
l

s

)2

+G(s)

[
1−

(
l

s

)2]
(2.20a)

G(s) = F (s) +
1

2

(
l

s

)
∂F (s)

∂s
(2.20b)

where F (s) = uL(x)uL(x + s) and G(s) = uT (x)uT (x + s) are the longitudinal and
lateral velocity correlation functions for two points at distance s apart in any direction.
In the case of the rotor velocity cross correlations, the two points of interest are considered
to be along the rotor disk at different radii, ri and rj , as shown in figure 4. The two rotor
co-plane points at radii r1 and r2 are considered with a time lag, τ , and are separated
by a distance, l, which can be calculated using trigonometry as,

l2 = r21 + r22 − 2r1r2 cos(NbΩτ). (2.21)

Here, the angular speed, Ω, has been multiplied by the number of blades to take into
account the blade-passing angular velocity. In other words, the distance, l, accounts
for the distance between two radii, (r1, r2), after time, τ . Thus, using Taylor’s frozen
turbulence hypothesis (turbulence is transported by the mean velocity), we may calculate
the distance, s, between one rotating point and the upstream fixed one as,

s2 = x21 + l2 = χ(τ)2 + r21 + r22 − 2r1r2 cos(NbΩτ). (2.22)
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Figure 4: Schematic representation of the velocity cross-correlation function calculation
using the RSS technique.

Note from figure 4 that the upstream point is separated by the second co-planar point
(at radius r2) by a streamwise distance, x1 = χ(τ), which is the spatial shift as calculated
numerically by equation (2.8) of Section 2.1. We can now compute the cross-correlation
function using the longitudinal correlation functions,

R11(r1, r2, τ) = R11(s) = F (s) +
1

2

(
l

s

)2
∂F (s)

∂s
. (2.23)

However, up until this point no assumptions have been made for the upstream fixed-point
autocorrelation function. A natural candidate model is that of von Kármán,

Φ(τ) =
2σ2

u

Γ (1/3)

(
τ/2

T ′

)1/3

K1/3

(
τ

T ′

)
(2.24)

where T ′ is the integral timescale defined as,

T ′ =
Γ (1/3)

Γ (5/6)
√
π

L1∞
U1∞

≈ 1.339
L1∞
U1∞

. (2.25)

Γ is the Gamma function and K1/3 is a modified Bessel function of the second kind and
order 1/3. Translating the temporal autocorrelation, Φ(τ), to spatial autocorrelation,
F (s), will need to again take into account the mean local velocity, U1(x). However, at
this time we need to calculate the time lag τ via,

τ =

τ∫
0

dτ =
1

U1∞

s∫
0

dx

γ(x)
(2.26)

which again is computed numerically. Thus, by substituting equation (2.26) to the
temporal autocorrelation function (eq. (2.24)) and using this expression in equation
(2.23), we obtain the cross-correlation relationship between two points rotating in the
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Figure 5: Plots of (a) the normalised velocity cross-correlation function and (b) the power
spectral density of the power fluctuations. Plots are shown for typical cases, where a = 0,
L1∞/D = 1 and the tip-speed ratios vary from λ = 0 to 8.

plane of the rotor disk,

R11(r1, r2, τ) =
2σ2

u

Γ (1/3)

(
s(τ)/2

1.339L1

)1/3[
K1/3

(
s(τ)

1.339L1∞

)
+

s(τ)

2(1.339L1∞)

K2/3

(
s(τ)

1.339L1∞

)(
l2

s(τ)2

)]
. (2.27)

Here, we have computed the derivative of F (s) using the following identity,

d

ds

(
s1/3K1/3(s)

)
= s1/3K2/3(s) (2.28)

whereas because of the local turbulence isotropy, correlations over one direction (e.g.
streamwise) should be identical to that of another direction (e.g. over distance s(τ)), as
only the radial distance affects the auto-correlation function. More importantly, we can
compute the power spectral density (PSD) of the power fluctuations by integrating over
all blade elements and time, τ , using the power-to-local-velocity equation (2.18) as well
as the cross-correlation equation (2.27) to obtain,

SP (f) =

(
3

2
ρ(1− a)2

dCL
dα

U2
1∞

)2 ∞∫
−∞

R∫
0

R∫
0

R11(r1, r2, τ)e−2πiτ c(r1)c(r2)

√
λ∗(r1)2 + 1

√
λ∗(r2)2 + 1dr1dr2dτ (2.29)

This equation will be evaluated numerically using a discrete Fourier transform. In
particular, we integrate equation (2.29) up to a time period, T = 100 s, with 4096 number
of points using the fast Fourier transform (FFT) technique. Typical plots of the auto-
correlation function, R11, and the produced spectra using different tip-speed ratio values,
λ =0 to 8, a = 0, and L1∞/D = 1 are shown in figure 5. For this analysis, we have
also assumed constant values for all other parameters (e.g. U1∞, dCL/dα) so that both
the amplitude of the low-frequency spectral amplitude and the spanwise variable of the
integrand in equation (2.29) (i.e. c(r)

√
λ∗(r)2 + 1) are set to unity.



Turbulence-driven power fluctuations of HATs 11

LDA probe

gearbox

& motor 

slipring 

LDA 

measurement

volume
sleeve covering

load sensors

Figure 6: Picture of the turbine being tested in the flume with simultaneous flow
measurements using the LDA system. The flag on the LDA mast is designed to break the
structure of the vortex downstream of the mast and therefore to minimise vortex-induced
vibration of the LDA probe.

3. Experiments

We present experimental data for a small-scale turbine of rotor diameter D = 0.724 m
placed in the recirculating flow facility of IFREMER in Boulogne-sur-Mer, France. The
flow channel is 4 m wide, has a usable length of 18 m and was operated at a 2 m depth
(Germain 2008). The channel-to-turbine blockage ratio, taking also into account the tower
and hub, was found to be as low as 0.0512. The measurements presented herein were
carried out with a nominal mean flow velocity of 0.779 m s−1 and turbulence intensity
(based on the streamwise component of the velocity only) equal to I = 13%. The spatial
variation of the streamwise velocity over the rotor area was estimated from measurements
carried out at the location of the rotor and in the absence of the turbine, and were found to
be below 4%. Hence, we may assume that the rotor experiences a spatially uniform inflow.
Based on the above measurements, we can estimate the channel (bulk flow) Reynolds
number to be as high as Re∞ = U1∞h/ν = 1.6× 106 (where h is the flume water depth)
and the diameter-based Reynolds number, ReD = U1∞D/ν = 580 800. Figure 6 shows
the turbine being tested.

3.1. Turbine specifications

The turbine used in the experiments was developed by IFREMER, with a strong focus
on load and torque measurements. The blades are made of moulded carbon-fibre re-
enforced plastic and are based on a NACA 63-418 profile. The turbine model is fitted with
multiple force sensors (Gaurier et al. 2017). The root of each blade is instrumented with
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a load transducer measuring forces in the flapwise and lead-lag directions and bending
moments along three orthogonal directions. Thrust and torque experienced by the rotor
as a whole are also measured separately by a torque and thrust transducer. The load
sensors were specially developed by the French company Sixaxes in collaboration with
IFREMER. The load instrumentation described above is located, in terms of load path,
upstream of the shaft seal so that the measurements are not affected by the friction
associated with the seal. The transducers are therefore made waterproof as they have
to be in contact with water. The turbine model generator is simulated by a permanent-
magnet brushed motor fitted with a 1:26-ratio gearbox, both supplied by the company
Maxon. The motor is controlled in speed to ensure near constant rotor speed. The
closed-loop speed control relies on an encoder mounted at the back of the motor. Forty-
eight shielded cables coming from the rotating turbine transducers are routed through
a 52-channel slipring (as shown in figure 6), enabling the measurement signals to be
transmitted to the stationary part of the turbine. These low-voltage signals are amplified
by an electronic signal processing unit that is located outside of the turbine and of the
water at the side of the flume.

The turbine performance and hydrodynamic characteristics, such as the power coef-
ficient curve and the lift curve coefficients, are also presented in figure 7. The symbols
in the power coefficient curve plot represent time-averaged measurements taken during
the course of the present experiments, whereas the continuous dashed line provides a
more complete picture of the turbine performance that was obtained during previous
measurements reported in figure 4 of Gaurier et al. (2017). The two measurements
are shown to be in excellent agreement. Moreover, in an attempt to estimate the
hydrodynamic characteristics of the individual blade elements (hydrofoils), three tip-
speed-ratio scenarios are considered and their collective chord Reynolds number, Rec =
Ωrc/ν, was found to range from 4× 104 to 2× 105. Using the potential flow solver, XFoil
(Drela 1989), we are able to extract the lift coefficient as a function of the angle of attack,
α, for the upper and lower bounds of chord Reynolds numbers values as shown on the
right-hand side of figure 7. The slope of the lift curve coefficient, dCL/dα, is shown to
be close to the theoretical value of 2π up until stall, after which the slope decreases to a
value approximately equal to unity. More details on the turbine model can be found in
Gaurier et al. (2017, 2018) as well as in the appendix of this article, where a complete
table of the radial distribution of the blade’s geometric characteristics is provided.

3.2. Synchronous LDA–Turbine measurements

3.2.1. Flow measurements

We measure flow velocity using a two-dimensional optical fibre LDA system that
comprises a FiberFlow transmitter and manipulators produced by the company Dantec
and of two Genesis MX SLM series lasers made by the company Coherent. One of the
lasers is green, with a wavelength of 514 nm, and the other is blue, with a wavelength
of 488 nm. LDA measurements were taken using a downward-looking probe mounted
on a motorised gantry, which allows automated probe movements in the vertical and
transverse directions. The distance between the end of the probe and the measurement
point is 500 mm, which allows for flow measurements close to the turbine with minimum
interference with the flow experienced by the rotor. The LDA probe was set up so that the
two velocity components measured were streamwise and transverse. The LDA sampling
frequency is not constant, as each measurement takes place when a seeding particle crosses
the measurement volume in the direction of interest (streamwise and/or transverse). In
order to carry out FFT frequency analysis of the LDA measurements, the signal is first
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Figure 7: Left: Power coefficient curve as a function of the tip-speed ratio, λ, symbols
showing the ensemble average coefficients obtained from these measurements, whereas
the continuous dashed lines shows the rotor’s power coefficient curve according to Gaurier
et al. (2020) and the Betz limit. Right: Lift coefficient as a function of the angle of attack
(in rad) for the NACA 63418 hydrofoil. Hydrofoil data for the different Rec have been
calculated using XFoil (Drela 1989) while the theoretical estimates for dCL/dα are shown
for reference.

re-sampled at a constant frequency corresponding to the average of the non-constant
sampling frequency of the raw signal. This signal processing operation is done on a
test-run-by-test-run basis. For the LDA measurements used in this study, the average
LDA sampling frequency associated with each run ranges from 601 Hz to 1351 Hz in the
streamwise direction and from 435 Hz to 846 Hz in the transverse direction. The higher
sampling frequency in the streamwise direction can be explained by the fact that the flow
is predominantly streamwise; therefore, more seeding particles cross the measurement
volume in that direction than in the transverse direction. For a given flow direction, the
large range in average sampling frequency between runs is a result of the fact that the
tests were carried out over a period of two weeks and the seeding particle concentration
evolved over that period (seeding particles were actually added at some point between
tests to ensure that the sampling frequency would not drop too low).

3.2.2. Data acquisition

All signals from the turbine sensors were logged using a National Instruments PXI
express 4339 analogue voltage card mounted into a PXI express 1078 chassis also
manufactured by National Instruments. The measurements were logged at 256 Hz and no
hardware filtering was applied. For each run, the start of the turbine sensors measure-
ments was triggered by the start of the LDA measurements, thus ensuring a synchronised
start between the flow and turbine measurements.

4. A parametric study of the semi-analytical model

In Section 2, we presented the derivation of our semi-analytical model for the power
fluctuations’ PSD based on a lift linearisation approach and the RSS technique. The final
PSD function (equation (2.27)), depends on a number of parameters that will ultimately
affect the solution. In fact, three parameters are believed to have a significant impact on
the results. These are the magnitude of the rotor tip-speed ratio, λ = ΩD/(2U1∞), the
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Figure 8: Effect of the rotor’s tip-speed ratio, λ, on the power spectra. (a): Plots of
the PSDs scaled by f−5/3 and plotted against the relative frequency, f/fT , (b): PSD
functions, SP (f), are plotted against the relative frequency, fD/U1∞, which reveals the
fact that the onset of low-pass filtering is independent of the tip-speed-ratio value. Plots
are shown for λ = 2, 4, 6, 8, 10, 12, 16 and 20.

upstream streamwise integral length scale normalised by the rotor diameter, D, L1∞/D,
and the axial induction factor, a, which affects the solution through the turbulence
translation function, s(τ). By varying one of these parameters individually while keeping
the other two constant, we may infer their effect on the PSD functions. For simplicity in
equation (2.29), we have assumed that c(r)

√
λ∗(r)2 + 1 is constant across the blade and

equal to unity while the amplitude, A = 3
2ρ(1 − a)2 dCL

dα U
2
1∞ = 3

2 (1 − a)2, after setting
all parameters other than the axial induction factor equal to unity. This representation
of the rotor is not a realistic one and we will show later that these parameters are inter-
connected and can have a great impact on the shape and magnitude of the final PSD
functions.

Starting with the rotational speed effect in figure 8(a), we have plotted SP (f) scaled
by f5/3 for different tip-speed ratios ranging from λ = 2 to 20, taking L1∞ = D and
the axial induction factor a set equal to zero so that x(τ) = −U1∞τ . The use of pre-
multiplied spectra (i.e. f5/3S(f)) in figure 8(a) is intended to highlight the regions where
low-pass filtering between the velocity and power fluctuations takes place. In addition,
we should note that while the assumption of a zeroth axial induction factor and the
extension of the tip-speed ratio range to larger values (e.g. λ = 20) allow us to test our
model’s asymptotic behaviour, such scenarios are of little practical use. Both wind and
tidal-stream turbines are designed to operate within a certain range of small tip-speed
ratios (e.g. λ < 10) and the axial induction factor would also depend on both tip-speed
ratio and the rotor aero/hydrodynamics. Nonetheless, in figure 8(a) we observe that
the power spectra are strongly impacted by an increase in the tip-speed-ratio value. In
particular, as we increase λ, the PSDs reach a slope, f−3/2−5/3, over the inertial sub-
range before transitioning to the high-frequency BPF regime. Here, the power spectra are
plotted against the normalised frequency, f/fT , where fT = Ω/2π; thus, it is important
to notice that the normalised transition frequency appears to be the same irrespective of
the tip-speed-ratio value. In addition, all cases experience a region in which f5/3SP (f)
remains constant, implying that in the lower inertial range, the low-pass filtering effect
does not occur for a sub-range of the inertial frequency range. This is an effect of only
the relative magnitude of the upstream turbulence integral length scale, L1∞, and the
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Figure 9: Power spectra plotted for increasing values of the ratio between the upstream
integral turbulence length scale, L1∞, and the rotor diameter, D. Plots are shown for
different values of L1∞/D = 0.05, 0.1, 0.25, 0.5, 1, 2, 5 and 10, whereas the tip-speed ratio
and axial induction factor remain constant and equal to λ = 6 and a = 0, respectively.

rotor diameter, D, which we will examine next. The increasing tip-speed ratio does not
appear to have an effect on determining the frequency where low-pass filtering starts.
The shift of the curves to lower relative frequencies (f/fT ) in figure 8(a) is merely an
effect of frequency normalisation. This is better highlighted in figure 8(b), where the
power spectra SP (f) are plotted against fD/U1∞ and it can be clearly seen that the
filtering effect starts at the same frequency irrespective of the λ value, which is around
f ≈ U1∞/D. In the same figure, we observe that the amplitude of the high-frequency
spectral peaks remain unchanged with increasing tip-speed ratios. Their amplitudes are
estimated to be around 1% of the respective low-frequency amplitude. Yet, the spectral
energy associated with these modes can be as large as 20% of the overall spectral energy
thanks to their presence in the higher-frequency regime.

Next, we look at the effect of the integral length scale by gradually increasing the
ratio L1∞/D from 0.05 to 10 (figure 9). The effect of the integral length scale on
the fluctuations was found to affect both the low- and high-frequency range (e.g. BPF
peaks). In particular, the amplitude of the spectral peaks was found to be smaller with
increasing L1∞/D. On the other hand, we observed an increase of the low-frequency
spectral amplitude for f < U1∞/D, as we increase the value of L1∞/D. In addition, for a
smaller L1∞/D ratio, the low-frequency “plateau” region extends to higher frequencies;
therefore, the energy cascade of the power fluctuations becomes shorter. Conversely, as
L1∞/D increases, the energy cascade of power fluctuations extends beyond the filtering
frequency, f ≈ U1∞/D, and reveals a region where the power spectra fall of as f−5/3. We
should also mention here that by increasing the integral length scale, the FFTs exhibit
numerical instabilities over the higher frequencies; therefore, a finer resolution is required
to properly resolve all modes.

Lastly, the impact of the induction factor and therefore the role of the rotor’s blockage
and turbulence distortion is examined as well. For our parametric analysis, we have
chosen L1∞ = D and λ = 7, which are representative values that will yield a converged
solution in terms of the rotational or upstream turbulence effects. To this end, we vary the
induction factor from a = 0 to 0.4 and present results for both the cross-correlation and
power spectral density functions in figure 10. For clarity, we plotted only the solutions for
a = 0 and a = 0.4, which are indicated in figure 10 as “No-induction” and “Induction,”



16 Deskos, Payne, Gaurier and Graham

Figure 10: The cross-correlation function and respective power spectra with and without
considering the effect of inflow distortion. Results are shown for λ = 7, L1∞/D = 1 and
taking an induction factor, a = 0.4. The power spectra in the right-hand-side plot are
scaled by f−5/3.

respectively. With the increase of the axial induction factor, the rotor cross-correlation
function is moved upward, as a result of the velocity delay that shows the effect at
the intermediate timescales, |τ | > 0.1. For τ = 0, the two normalised cross-correlation
functions attain a value of unity while as τ → ∞ the two solutions collapse, as shown
in the zoomed-in plot of figure 10(a). This implies that blockage does not affect the
interaction of the large flow variations with the rotor. The impact of the axial induction
factor on the cross-correlation function is also shown to affect the shape of the derived
PSD function. Inherently, the collapse between the cross-correlation function for small
and large values of |τ | would mean that the low- and high-frequency spectral amplitudes
will not be affected significantly as confirmed by figure 10(b). Conversely, the intermediate
frequency range is shown to be impacted the most, with the PSD being pushed downward.
Moreover, for an induction factor of a = 0.4, we were able to recover the f−2 slope at
the same range from the previously found f−3/2. Therefore, it can be argued that the
final low-pass filtering effect and the respective f−11/3 scaling law stems not only from
the angular velocity of the rotor (rotational effects) but also from the flow deceleration
induced by the rotor’s blockage.

5. Comparison with experiments

5.1. Distortion of the approaching turbulence

We start the comparison between the model and the experimental results by comparing
the inflow velocity field at different locations upstream the rotor. Measurements of the
inflow velocity have been collected along the rotor axis and at the locations x1/D = (-4,-
3,-2,-1,-0.5,-0.15) upstream the rotor for all three tip-speed-ratio cases, λ = 2, 4 and 7. By
excluding the near-rotor measurements (i.e. x1/D =−0.5 and −0.15) to avoid the rotor’s
timescale interference, we may compute the upstream integral turbulence timescale,

T1∞ =

∞∫
0

u′1(t)u′1(t+ τ)

u′1
2

dτ. (5.1)
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Figure 11: Auto-correlation function of the streamwise velocity fluctuations upstream the
rotor. The black thick solid line represents an ensemble average of the auto-correlation
functions from all upstream locations and tip-speed ratios, whereas the vertical dashed
line, is the upper limit, τ ≈ 2.93 s, up to which the ensemble-average auto-correlation
function is integrated in order to compute the integral timescale, T1∞.

To obtain a representative value for the integral timescale, T1∞, we use an ensemble-
averaged estimator of the mean autocorrelation function, u′1(t)u′1(t+ τ), and integrate
in time until it crosses zero for the first time (τ ≈ 2.93 s). This limit has been chosen in
an arbitrary fashion and one could extend integration to higher values of τ . However, we
have found that integration of the ensemble-averaged auto-correlation function beyond
our selected value yields very small differences for the magnitude of the integral timescale.
The ensemble average of the autocorrelation function together with all other recorded
cases as well as the ensemble-average function’s “zero-crossing” point are shown in figure
11. For the calculation of the integral length scale, we invoke the “frozen turbulence”
assumption, L1∞ = U1∞T1∞, where T1∞ is an integral timescale extracted from the
temporal auto-correlation function, u′1(t)u′1(t+ τ). According to the present calculations,
the integral length scale is found to be equal to L1∞ = 0.7D.

Next, in figure 12 we present the mean velocity and r.m.s of the velocity fluctuations
both from measured and model predictions as a function of the non-dimensionalised
distance, x1/D. The three tip-speed-ratio cases are presented separately, as the rotational
speed of the turbine affects the axial induction factor, a, through an increasing thrust
force, (λ, a) =(2, 0.13), (4, 0.3) and (7, 0.41). Nonetheless, in all cases the same pattern
is observed. The mean velocity (U1/U1∞) remains unchanged up until x1/D =−1, after
which it starts reducing to almost half its value as it reaches the rotor plane. This is
confirmed by the analytical solution of Conway (1995). It is noticeable that Conway’s
model underpredicts the velocity reduction for λ = 2, especially for smaller values of
x1/D. A possible explanation for this phenomenon is that the geometry of the nose
cone is not taken into account in the model. Indeed, for x1/D =−0.5 and −0.15, the
distance between the LDA measurement volume and the tip of the nose cone is only
270 mm and 16 mm, respectively. Such a close proximity of the nose cone (especially for
x1/D = −0.15) will lower the velocity measured by the LDA system. The discrepancy
between the model and the experimental measurements for low values of x1/D is also
larger for λ = 2. At a higher tip-speed ratio, the reduction in streamwise flow velocity
close upstream of the rotor is dominated by the effect of the rotor, which is taken into
account by the model. Whereas for λ = 2, the flow deceleration is comparatively lower and
the effect of the nose cone becomes significant. Nevertheless, Conway’s model provides an
accurate enough solution for the mean upstream rotor velocity for λ = 4 and 7. Likewise,
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Figure 12: (a) Mean normalised velocity, U1/U1∞, upstream of the rotor and (b) mean

square intensity ratio, u′1
2/u′1∞

2. Both quantities are plotted against the normalised
upstream distance, x1/D, and shown for all three tip-speed ratios. Symbols are the
measurements, solid lines are the quasi-steady predictions and dashed lines follow the
work of Milne & Graham (2019).

for the r.m.s. of the velocity fluctuations, a similar picture is drawn with the velocity
fluctuations reducing significantly more as they near the rotor. To model this behaviour,
we have considered two approaches. The first considers a quasi-steady approach for the

r.m.s. of the velocity fluctuations, u′1
2/u′1∞

2 = γ2(x1), whereas the second approach
(plotted as a dashed line in figure 12b) uses the methodology of Milne & Graham (2019).
The two approaches follow the same trend, with the latter appearing to be different only
in the vicinity of the rotor. This is due to the fact that both the vorticity distortion
(amplification of the low-frequency turbulence spectral content) and blockage effects can
be captured by this model. Nonetheless, the good agreement between the two approaches
and the experimental data validates our hypothesis regarding the quasi-steady behaviour
of the velocity fluctuations presented in Section 2.1.

Looking at the inflow velocity spectra of figure 13, three operational cases are again
presented. For each case, the streamwise velocity spectra are plotted for different locations
upstream together with the undistorted and distorted theoretical spectra computed using
the von Kármán model spectrum of (2.10). The distorted spectrum is taken at the closer
location to the rotor (x1/D =−0.15) for which we have measurements. As expected, the
undistorted von Kármán spectrum is found to provide an excellent fit to the experimental
data using the measured integral length scale, L1∞ = 0.7D, for all velocity spectra at
locations x1/D < −0.5. Conversely, the distorted velocity spectra show that the approach
is only valid at the low-frequency regime and for the λ = 4 and 7 cases. This is because,
in general, our quasi-steady model becomes incapable of capturing the velocity spectra
for higher frequencies, f > U1∞/L1∞, whereas for λ = 2 the inference of the noise cone
appears to have the same effect we pointed out previously when we presented the mean
velocity and r.m.s. of the velocity fluctuations comparisons with the respective measured
data.

5.2. Power spectra

We present a comparison between our semi-analytical solution and the experimentally
measured PSD functions. Additionally, we will present a comparison with the PSD model
of Tobin et al. (2015). Tobin et al. (2015) proposed a first-order stochastic ODE, which
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Figure 13: Spectra of streamwise turbulent velocity in the inflow region at various
distances upstream the rotor plane, x1/D = (-0.15,-0.5,-1,-2), at hub height. Results
are shown for all three tip-speed ratios (λ = 2, 4 and 7).

they derived using basic energy balance arguments,

dP

dt
+
P

tI
=

1

2tI
ρCPAu

3(t) (5.2)

where tI = IΩ/(2Q) is a constant rotor inertial timescale. By solving the ODE using
the impulse response function, Tobin et al. (2015) showed that the transfer function
between the velocity and power fluctuation spectra approaches the f−2 behaviour over
the inertial and high-frequency regimes. In addition, they proposed using a second-order
Butterworth filter for the transfer function between the power and velocity spectra and
combined it with the von Kármán model velocity spectrum to finally obtain a model for
the rotor’s power spectrum,

SP (f) =
[3/2CpρAU

2
1∞]2√

1 + (2ftI)4
4u′21∞L1∞/U1∞

[1 + 70.8(fL1∞/U1∞)2]5/6
. (5.3)

The proposed model spectrum effectively captures the low-pass filtering behaviour over
higher frequencies; however, it does not predict the spectral peaks around the BPFs. At
the end of this section, we will show that the Tobin’s model agrees well with our semi-
analytical, however only for ideal conditions and in the low and inertial-range frequencies.

Looking at the measured velocity and power PSDs of figure 14, we observe that indeed
the low-pass filtering behaviour between power and velocity fluctuations exists and that
the effect is more pronounced for the high tip-speed-ratio cases (λ = 4 and 7). A clearer
picture of the three PSDs can be obtained by collapsing all data together (by dividing
with the turbine frequency, fT = Ω/(2π)), as shown in figure 15 (left). The collapsed
spectral functions (shown in the left-hand side of the figure) confirm the existence of the
three distinct regions: a low-frequency regime (I) in which power fluctuations follow those
of the velocity, an intermediate regime (II), often coinciding with part of the inertial sub-
range, in which the power fluctuation scale as f−11/3, and a high-frequency regime (III)
containing the BPF and their harmonics, 3fT , 6fT , 9fT and so on. Such characterisation
of the power spectra is consistent with previous observations in both small- and large-
scale experiments (Chamorro et al. 2013, 2015; Tobin et al. 2015). The presence of the
BPF around multiples of 3fT is independent of the vertical shear profile, as was shown
numerically by Churchfield et al. (2012), and stems from the fact that power fluctuations



20 Deskos, Payne, Gaurier and Graham

Figure 14: Power spectral density functions for the power and upstream velocity
fluctuations (at hub height).

are the result of torque fluctuations over all three turbine blades. A potential shift of the
peaks away from the 3fT frequency multiples would mean that one of the blades exhibits
a different aero/hydrodynamic behaviour either by design (e.g. variation of shape/mass
between blades) or by control (e.g. individual blade pitch). We may also notice that
a critical frequency exists that separates regimes (II) and (III). This critical frequency
also concurs for all three cases and it can approximately be placed at fc = 3fT /2.
This observation agrees with Chamorro et al. (2013), who reported a linear relationship
between fc and fT . A more instructive way to encapsulate the physical characteristics of
the three regimes can be obtained by defining a transfer function, T (f/fT ), between the
power and velocity spectral density functions as in Chamorro et al. (2015),

TP(f/fT ) =
SP (f/fT )

Su(f/fT )
. (5.4)

Figure 15 (right) shows that the measured transfer function for λ = 4 and 7 collapse
together, thereby further emphasising the existence of the three regimes. However, for
λ = 2, the spectral density function deviates from the previously mentioned description.
In the lower frequency regime, a positive cascade of spectral energy exists as dT /df > 0.
This is believed to be a result of the vortex shedding from individual blade elements that
undergo dynamic stall with substantial flow detachment. Dynamic stall tends to transfer
low-frequency velocity fluctuations toward the higher-frequency power spectral regime
through lift fluctuations and instabilities introduced by the trailing- and leading-edge
vortex shedding.

In the same figures, we also plot the power spectra and the respective transfer functions
using the present semi-analytical model. For our model calculations, we used 20 blade
elements following the blade radial characteristics of table 1, whereas we extract the
induction factors from the experimental data based on the mean thrust force. Finally,
by monitoring the local angle of attack, we assign a lift coefficient slope to the local
blade elements that switches between dCL/dα = 2π for α < αstall and dCL/dα = 1
for α > αstall. From figure 15 (left), we can also see that our semi-analytical solution
reproduces the power spectral peaks associated with the spectral amplification around the
BPF and its harmonics exhibited by the experimental measurements. This is particularly
true when it comes to the frequencies of these peaks. However, we notice that the model
tends to overpredict the amplitude of the peaks. This is an inherent limitation of our semi-
analytical model. The proposed linear relationship between inflow velocity fluctuations
and the rotor’s torque (see equation (2.17)), as well as the application of quasi-steady
theory to the inflow velocity distortion, results in the overprediction of the interactions
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Figure 15: Left: Power spectral functions of the turbine power fluctuations, SP (f), plotted
against the normalised frequency, f/fT . Right: the transfer function, TP (f/fT ), as a
function of the normalised frequency, f/fT . In both plots, the measured PSD are plotted
together with the model predictions from Tobin et al. (2015) and the present work.

between small-scale turbulence and the blade aero/hydrodynamics. To this end, our
model prediction for the energy content within these peaks is found to be 10% more
than the respective value found using the experimental data. In addition, for the optimal
tip-speed-ratio case (λ = 4), our model predicts that approximately 21% of the overall
energy is contained within the BPF modes, whereas using the experimental data reveals
a smaller energy content that is approximately 8% of the total energy.

In fig 15, we also plot the power spectra and the respective transfer functions using
the Butterworth filter proposed by Tobin et al. (2015). To make the power spectra
predictions using Tobin’s model, we extracted the experimental power coefficients, CP ,
for the different tip-speed ratios, as well as compute the “inertial” timescale based on
the experimentally obtained, time-averaged torque and rotor speed. The two model
predictions (present and Tobin’s) are shown to exhibit an overall good agreement.
However, important differences exist with the most significant one being that Tobin’s
model ignores the spectral amplification around the BPF and its harmonics. Moreover,
the dependence of Tobin’s transfer function on the mean power coefficient, CP , appears
to underpredict the low-frequency amplitude of the transfer function for λ = 7 while
overpredicting the one for λ = 2. By revisiting our analysis in Section 2, we may argue
that the mean power coefficient is not a good estimator of the power fluctuations, as
it does not provide any information on the aero/hydrodynamics of the individual blade
elements. Conversely, the lift curve slope, dCL/dα, provides a better estimate for the
amplitude of the spectra, as shown by the ability of the current model to better capture
the low-frequency amplitude of the experimental PSDs for all three tip-speed ratios.
Surprisingly, the two models agree well for λ = 4, which corresponds to the optimal
rotor case (e.g. axial induction factor a ∼ 1/3). For Tobin’s model, the amplitude of the
transfer function at the lower-frequency regime can be obtained by taking the limit of



22 Deskos, Payne, Gaurier and Graham

f → 0 to obtain,

TTobin(0) =

(
3

2
ρCpAU

2
1∞

)2

(5.5)

On the other hand, to obtain the low-frequency magnitude from the present model, we
will need to take the limit of τ → ∞ for the cross-correlation function, R11(r1, r2, τ),
which allows us to drop the time integral (Fourier transform) of the autocorrelation
function to obtain,

Tpresent(0) =

(
3

2
ρ(1− a)2

dCL
dα

U2
1∞

)2
[ R∫

0

c(r)
√
λ∗(r)2 + 1dr

]2
(5.6)

Dividing the two we obtain,

Tpresent(0)

TTobin(0)
=

[
dCL
dα

(1− a)2

A CP

R∫
0

c(r)
√
λ∗(r)2 + 1 dr

]2
. (5.7)

Finally, considering a theoretical power coefficient, CP = 4ηa(1 − a)2, where η is an
efficiency coefficient (ratio between the actual CP and the theoretical Betz formula),
a is the axial induction factor, dCL/dα = 2π, and considering the blade’s optimal
design equations from Burton et al. (2001)[Chapter 3, equation 3.67], we may equate
the integrand to a constant value,

c(r)
√
λ∗(r)2 + 1 =

2π

3

4aR

λCL
(5.8)

which leads to the final,

Tpresent(0)

TTobin(0)
=

(
π

3

4

ηλCL

)2

≈ 1, (5.9)

for the optimal case, where λ = 4, η = 0.64 and CL = 1.5. A final point can also be made
for Tobin’s “inertial” timescale, tI , which is proportional to the rotor’s structural moment
of inertia, I. This timescale controls the width of the transfer function’s low-frequency
“plateau” region and therefore the critical frequency after which low-pass filtering starts.
The “inertial” timescale is found to be different for each tip-speed ratio, as the ratio
between the mean torque, Q, and the mean rotor speed, Ω, varies with λ. Again, for all
three cases, our semi-analytical model and that of Tobin et al. (2015) agree well only
for the optimal tip-speed ratio, λ = 4. In the present semi-analytical model, this critical
“transition” frequency is found to be flow-pass ≈ 0.25U1∞/D for λ = 4. On the other
hand, in Tobin’s model low-pass filtering is activated when 2ftI = 1. By substituting
flow-pass into Tobin’s model, we find that tI = 4D/(2U1∞) ≈ 1.8, which agrees with the
value found for λ = 2 and 4 but not λ = 7, which was found to be tI = 8.16 s. This is
caused by the fact that the mean torque, Q, is reduced when the rotor operates beyond its
optimal tip-speed ratio, whereas the rotor speed continues to increase. Lastly, we should
emphasise that our experiments were conducted at constant values of angular speed, Ω;
hence, the rotational kinetic energy was also constant, and therefore the rotational inertia
of the structure was found to be irrelevant.
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6. Concluding remarks

In this work, we examined the interaction between onset turbulence and a horizontal-
axis turbine’s power fluctuations under different tip-speed-ratio scenarios. The problem
was studied both experimentally and through a novel semi-analytical model. The focus
was on the power spectral density function of the power fluctuations (power spectra), and
in particular, the rotor’s so-called low-pass-filtering behaviour in the inertial sub-range as
well as the phenomena that affect it. The analysis showed that the turbine’s rotational
speed (i.e. tip-speed ratio), blade aero/hydrodynamic characteristics and distortion of
the approaching turbulence all contribute to the filtering mechanism. In particular, we
show that only a combined effect of inflow distortion and turbine rotation results in the
experimentally observed −11/3 scaling over the inertial sub-range. In addition, a detailed
comparison with the present experimental data shows that the proposed semi-analytical
model can also go beyond the inertial sub-region and effectively capture the behaviour
around the blade-passing frequency and its high-frequency aliasing modes. To this end,
the model also provides a pathway to calculating high-frequency torque fluctuations that
are associated with rotor fatigue.

A parametric study for the proposed semi-analytical model highlighted the importance
of the tip-speed ratio, upstream turbulence integral length scale and onset turbulence
distortion/deceleration in shaping the power spectra. The magnitude of the tip-speed
ratio was found to affect the intermediate and higher-frequency regime. An increasing
tip-speed ratio results in low-pass filtering of the power spectra in the inertial sub-range
while it also generates pronounced spectral peaks around the BPFs (3fT , 6fT , 9fT , ...).
Inherently, these spectral peaks will occur at higher frequencies as the tip-speed ratio
increases. Conversely, the incipience of the low-pass filtering was found to be independent
of the tip-speed-ratio magnitude and instead depends on the rotor diameter, D, and the
undistorted upstream velocity, U1∞. The magnitude of the integral turbulence length
scale, L1∞, was found to play a key role in determining the shape and the spectral
amplitude in the low-frequency regime. For instance, larger values of L1∞ will extend
the power spectra to low frequencies and may reveal a region where the −5/3 power
law prevails. Such region cannot be seen when L1∞ 6 D as low-pass filtering is active
everywhere in the inertial sub-range. Again, the onset of low-pass filtering remains
independent of the magnitude of the integral streamwise turbulence length scale. The
−11/3 scaling law observed in our experimental results as well as in previous studies
(Tobin et al. 2015; Chamorro et al. 2015) over the “filtered” region of the inertial sub-
range was obtained only when flow distortion was taken into account in our calculations.

Previous studies undertaken on the same problem (Tobin et al. 2015; Chamorro et al.
2015) have characterised the high-frequency regime as comprising uncorrelated and low-
energy content disturbances. Dismissing the existence of the spectral peaks around the
BPF in the high-frequency regime may result in ignoring a large amount of spectral
energy contained within these frequencies. According to our model predictions, the
BPF energy content can be as large as 21% of the overall spectral energy, whereas our
experimental data suggest a figure closer to 8%. This percentage difference between the
model and the experimental data stems from discrepancies around the BPF peaks. Our
model overpredicts these peaks, as it lacks the ability to capture the unsteady blade-
hydrodynamic phenomena present in these higher frequencies. Nonetheless, a number of
studies (Stevens & Meneveau 2014; Bossuyt et al. 2016, 2017; Liu et al. 2017) have also
suggested that time or space averages of the power output over multiple turbines (turbine
arrays) may smear out the BPF peaks in the array-aggregate power spectra and give way
to spectral peaks around the advective frequency (AF), fa ∼ U1∞/Sx, where Sx is the
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distance between rows of turbines. An interesting analogy for the formation of these two
types of spectral peaks (BPF and AF) can be drawn here as they are both a result of the
velocity sampling. In the former (BPF), the spectral peaks happen because the velocity is
sampled rotationally and with a constant angular speed, whereas in the latter (advective
frequency), the velocity sampling corresponds to the convective travel time between rows
having a constant spacing, Sx. Likewise, the −11/3 scaling law present in the inertial
frequency range of the array-aggregate power spectra measured by Liu et al. (2017) may
also be partially attributed to the velocity sampling between rows of turbines. More
importantly, the presence of the f−2 scaling in the transfer function between the power
and velocity spectra, which is prevalent across the low and inertial frequency regimes in
the data reported by Liu et al. (2017), can also be ascribed to the relatively small length
scale to diameter ratio, L1∞/D, which was used in their experiments and allows the low-
pass filtering effect to dominate. This is analogous to our model’s spectral behaviour for
a single turbine power output, and indicates the important role of the velocity sampling
scale (e.g. frequency, length etc.) and its relative magnitude to the turbulence length
scale, in shaping the spectra of a single turbine or multiple turbines’ array-aggregate
power output.

Finally, this study seeks to provide a benchmark for comparison between high-fidelity
computational fluid dynamics models with the ability of blade phase-resolving simula-
tions, e.g. actuator line models (Churchfield et al. 2012; Deskos et al. 2020), and the pre-
sented solution for both wind and tidal energy applications. This will be complementary
to many existing validation tests already undertaken by model developers that involve
wake and performance statistics. Future studies will focus on time-series predictions of
the power fluctuations by utilising the derived PSD functions.
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Appendix A.

The turbine used for these experiments is similar to that used in previous studies
(Gaurier et al. 2018, 2017). For completeness, we present in table 1 the chord and
thickness sizes both in a dimensional and non-dimensional format, as well as the twist
angle for each blade radius, r.
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r/R r (mm) c/R c (mm) t/c (%) t (mm) twist (◦)

0.1620 58.65 0.0548 19.84 80.0 15.88 29.57
0.1782 64.50 0.0548 19.84 100.0 19.84 29.57
0.1830 66.25 0.0548 19.84 100.0 19.84 29.57
0.2249 81.41 0.1471 53.23 36.0 19.16 25.63
0.2668 96.59 0.2392 86.59 21.3 18.44 22.15
0.3087 111.75 0.2296 83.12 21.4 17.79 19.30
0.3506 126.90 0.2184 79.07 21.7 17.16 16.97
0.3925 142.10 0.2070 74.94 22.0 16.49 15.05
0.4344 157.25 0.1962 71.01 22.2 15.77 13.46
0.4763 172.41 0.1861 67.38 22.4 15.09 12.12
0.5182 187.59 0.1768 64.01 22.5 14.40 10.98
0.5601 202.75 0.1685 61.00 22.5 13.73 10.01
0.6019 217.91 0.1610 58.28 22.4 13.05 9.18
0.6439 233.10 0.1541 55.79 22.2 12.39 8.45
0.6858 248.25 0.1478 53.51 21.9 11.72 7.82
0.7276 263.40 0.1422 51.49 21.5 11.07 7.26
0.7696 278.59 0.1371 49.63 20.9 10.37 6.77
0.8115 293.75 0.1325 47.95 20.2 9.69 6.34
0.8533 308.91 0.1281 46.38 19.5 9.04 5.95
0.8953 324.09 0.1242 44.97 18.6 8.37 5.61
0.9372 339.25 0.1206 43.64 18.0 7.86 5.29
0.9790 354.40 0.1173 42.45 18.0 7.64 5.01
1.0000 362.00 0.0633 22.93 25.0 5.73 4.87

Table 1: Blade dimensions based on NACA 63-418 profile. r is the local radius, R the
overall blade radius (362 mm), c the chord length and t the thickness.

REFERENCES

Adcock, Thomas AA., Drapper, Scott. & Nishino, Takafumi 2012 Tidal power generation
- a review of hydrodynamic modelling. Journal of POWER AND ENERGY .
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Gaurier, Benôıt, Carlier, Clément, Germain, Grégory, Pinon, Grégory & Rivoalen,
Elie 2020 Three tidal turbines in interaction: An experimental study of turbulence
intensity effects on wakes and turbine performance. Renewable Energy 148, 1150 – 1164.
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