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Abstract

              Numerical models of the flow and wakes due to turbines operating within a real-scale offshore

            wind farm can lead to a prohibitively large computational cost, particularly when considering

           blade-resolved simulations. With the introduction of turbine parametrizations such as the actu-

               ator disk (AD) or the actuator line (AL) models, this problem has been partially addressed, yet

             the computational cost associated with these simulations remains high. In this work, we present

           an implementation and validation of an AL model within the mesh-adaptive three-dimensional

         fluid dynamics solver, Fluidity, under a unsteady Reynolds-averaged Navier-Stokes–based turbu-

              lence modelling approach. A key feature of this implementation is the use of mesh optimization

             techniques, which allow for the automatic refinement or coarsening of the mesh locally according

               to the resolution needed by the fluid flow solver. The model is first validated against experi-

             mental data from wind tunnel tests. Finally, we demonstrate the benefits of mesh-adaptivity by

       considering flow past the Lillgrund offshore wind farm.
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 1 I N T R O D U C T I O N

                      Turbine parametrization models (TPMs) such as the actuator line model (ALM) and the actuator disk model (ADM) exhibit a large number of advan-

                   tages compared to blade-resolved simulations, both in terms of their respective computational efficiency but also as far as their implementation

                        within a CFD solver is concerned. First, by using TPMs, the number of degrees of freedom needed by the fluid solver is significantly reduced since

                      the boundary layer of the individual blades is no longer required to be resolved. Second, the introduction of the momentum source to represent

                         the motion of the blades circumvents the need to use either a rotating or an overlapping mesh strategy to capture the motion of the turbine rotor.

                    These two factors have rendered the use of TPMs a computationally affordable alternative approach for the modelling of large-scale wind farms.

        Hence, the actuator disk model was used in previous1 5-                to model the wake field and predict the power output of operating offshore wind farms (eg,

     Lillgrund and Horns Rev) while others 6 8-                     undertook AL simulations to solve for the wake field as well as to obtain statistics for blade loads. In all of

                     these studies, either a uniform mesh or a block-mesh strategy was employed within the presented simulations. Such an approach requires a priori

                        knowledge of the wake length and width, or otherwise, a large volume of the computational domain to be a assigned as the refined “wake region.”

                    Moreover, as more realistic simulations are required for utility-scale wind farms, including changes in the wind (and therefore wake) direction, the

                      “refined wake regions” will need to be expanded to a greater extend in order to provide the required resolution of such simulations. Undoubtedly,

                           this approach is not optimal for the discretization of the domain, as even a moderate expansion (in the order of a few decades of metres) of the wake

                    region can significantly increase the number of degrees of freedom. Inherently, some sort of flexible mesh adaptivity procedure (eg, the dynamic

                      mesh optimization approach used here) that is employed during the course of the simulation would be an attractive approach to consider for the

                 above described problem. This particular need has already been expressed in previous studies. For instance, Churchfield et al 8    mentions that “ …

                      adaptive mesh refinement would be useful in providing higher resolution only where necessary, but may incur a run-time penalty in performing the refinement

    and the processor load balance         … .” In a similar note, Nilsson et a l 4             also used different resolution grids and pointed out that the simulations using the
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            most refined grids were abandoned because of limitations on the available computational resource.

           Combining TPMs with mesh–optimization techniques was first considered by Creech et al, 9        and more recent implementations can also be found

  in Abolghasemi et al,10   and Creech et al11             each employing a different TPM (actuator volume and actuator disk and actuator line based, respectively).

           Mesh-adaptivity has also been used in conjunction with blade-resolved simulations by others 12 14-     who employed an unstructured overlapping

                    mesh strategy to obtain the near-body solution and either unstructured or Cartesian mesh-adaptive solvers for the off-body flow. Such dual mesh

                    approaches have been effectively used to calculate wind turbine and rotorcraft wakes, and it has been postulated that the computational efficiency

                     of the approach is thanks to the off-body dynamic mesh-adaptivity solver. Indeed, a significant amount of computational resources can be saved by

                        using an optimal local refinement or coarsening of the mesh while at the same time maintaining the desired levels of solution accuracy. In the context

           of large-scale wind farm simulations, mesh-adaptivity was used by Creech et al 15    and Kirby et al 16        to simulate the wakes developed within the Lill-

                   grund offshore wind farm. Both studies demonstrated the ability of a mesh-adaptive solver (either unstructured or Cartesian-based) to be coupled

                  with TPMs or overlapping mesh strategies, respectively, and to be used as a high-fidelity, multiscale wind farm modelling tool.

                In the abovementioned mesh optimization/adaptivity algorithms and studies the obtained solutions have not been compared with traditional

                      static mesh solutions using the same solver in order to provide a rigourous estimate of either the potential accuracy gains and/or reductions in

                   computational effort. Such questions are important in shedding light on the efficiency and accuracy of mesh-adaptive solvers, and more specifically

                    on their applicability to wind energy research. To partially address these questions, we present herein the implementation and validation of an

                    ALM, which employs dynamic mesh optimization techniques. The optimization of the mesh is achieved through a strategy, which allows control over

         both the numerical error and mesh size at run time. 17 19-            Both the ALM and mesh-adaptivity approach are developed within the open-source code

Fluidity, 18 20,                     which is a general purpose unstructured mesh-based finite element solver. In addition, the fluid flow is modelled in this work using

              an unsteady Reynolds-averaged Navier-Stokes (uRANS)-based approach, combined with the k– shear-stress transport (SST) turbulence model.𝜔 21

               Before proceeding to the large-scale simulations, the accuracy of the new ALM implementation in Fluidity (combined with the uRANS configuration)

          is investigated through comparisons with a series of wind tunnel tests 22 2 3,             for the power and wake of one and two turbines operating in-line. The

                      model shows very good agreement with the rotor's thrust and power coefficients predictions as well as the wake field. These comparisons give us

                confidence that the model can predict the wake characteristics with high accuracy when real-world scale wind farms are considered. To demonstrate

                     the efficiency of the mesh optimization approach, we compare the results from an adaptive mesh simulation with those from a static pre-refined

            mesh simulation for the Lillgrund offshore wind farm and data from the literature.24

             The paper starts with Section 2, which introduces the mesh-adaptive fluid solver, and Section 3, which discusses the implementation of the turbine

                    parametrization. In Section 4, the two mesh approaches (fixed vs adaptive) are validated against the experimental data of Krogstad and Eriksen 22

 and Pierella 23                   while in Section 5 simulation of the Lillgrund offshore wind farm are undertaken. The mesh optimization techniques are presented

                      from the point of view of the same solver (Fluidity), and its contribution to increasing a ccuracy and reducing computational cost is finally discussed

   thereafter in Section 6.

  2 M O D E L I M P L E M E N T A T I O N

       2.1 Unsteady RANS formulation of the governing equations

                    The wind turbine wakes are modelled using the uRANS equations, in which the velocity is decomposed into mean and fluctuating (turbulent)

        components. Within uRANS, the governing equations take the form

   ∇ · u = 0, (1)

𝜌
𝜕u

𝜕t
 + 𝜌     u · ∇u = −∇p + ∇𝜇 2  u − ∇ · (𝜌u′  ⊗ u′) + FT  , (2)

where        u is the time-averaged component of velocity, u
′

              is the fluctuating velocity component, is the dynamic viscosityp is the mean pressure, 𝜇

    of the fluid, and F T                  is a momentum source term computed at each time step from the ALM. The term −∇ · (𝜌u′  ⊗ u′       ) is a residual term from the

                  application of the time-averaging operator on the outer product of the fluctuating velocity components, called the Reynolds stress tensor 𝝉R . Th e

                    presence of the Reynolds stress tensor in (2) introduces a number of additional unknowns, and therefore, the Boussinesq approximation is adopted

                    to provide closure to the system of equations. That is, the Reynolds stresses are related to the time-averaged turbulence kinetic energy  k =
1

2
u ′  · u′

   and strain-rate tensor via

−𝜌u ′  ⊗ u′ = �̄�R = −
2
3

  k𝜌 𝜇I + T


 ∇u + (∇u) T


 , (3)

 where 𝜇T                  is the eddy viscosity and I the unit tensor. To compute k, w e m ake us e of t he s ta n da rd k − 𝜔 SST model proposed by Menter,21 which

       requires the solution of two additional transport equations:

𝜌
𝜕k

𝜕t
   + 𝜌u · ∇k = ∇ · ((   𝜇 𝜇+ T 𝜎k )∇k) + P̃ k  − 𝜌𝛽∗  k𝜔, (4)

and

𝜌
𝜕𝜔

𝜕t
   + 𝜌u · ∇𝜔 = ∇ · ((   𝜇 𝜇+ T𝜎k ) ∇𝜔) +


𝜌𝛼

𝜇T


P̃k  − 𝜌𝛽𝜔

2  + 2(   1 − F 1) 𝜌𝜎𝜔2

1
𝜔
∇ ∇k 𝜔, (5)
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where

𝜇T  = 𝜌
k

𝜔
, (6)

    is the eddy viscosity and F1     a blending function defined in Menter. 21   The tildered quantity P̃k       denotes a limiting turbulence kinetic energy production

 given by

P̃k  = (min P k  , 10𝜌𝛽∗  𝜔 ,) (7)

            which is applied to prevent the build-up of turbulent energy in stagnation regions. 25     Finally, the closure coefficients 𝜎k  , 𝜎 𝜔   , ,𝛼 𝛽 , an d 𝛽∗  are selected

        by linear interpolation using the blending function value F1              . Further information for the model implementation can be found in the appendix of

Abolghasemi10    and the references therein.

     2.2 Numerical implementation and mesh optimization

                  The system of governing equations, including the additional scalar transport equations required for the turbulence modelling, has been discretized

    within the open-source code Fluidity. 20           Fluidity is a general purpose three-dimensional, unstructured mesh, finite element/control volume-based

 PDE solver 17 19 26, ,                  with the ability to make use of optimization-based anisotropic mesh adaptivity. For our analysis, the continuity and momentum

                  equations are discretized using mixed finite elements for which piecewise-linear discontinuous basis functions are used to represent velocity, while

             continuous piecewise-quadratic basis functions are used for pressure over tetrahedral elements (the so-called P1 DG     -P2 element pair). This scheme

       is known to be a Ladyzhenskaya-Babuska-Brezzi stable combination27       and to perform well for advection-dominated problems.28  The formulation

    also uses a slope limiter 29                     to ensure a robust solution for the velocity and pressure fields. The k– SST model makes use of a control volume-based𝜔

discretization19                   with flux limiters to help prevent oscillatory behaviour of the turbulent kinetic energy k. For time marching, the second-order

                accurate Crank-Nicolson scheme is used and is combined with an additional explicit subcycling approach for momentum advection. 20

                  The underlying unstructured tetrahedral mesh is also subject to optimization-based adaptivity algorithms, which are used in order to improve

                       the quality of the mesh and provide higher or lower resolution at locations, which are identified by the solver. For instance, the introduction of

                       the AL momentum source will create a requirement for a particular edge length over the assigned rotor volume. This is achieved here through the

                       specification of a scalar field, which identifies the region that the rotating actuator lines will occupy during the simulation. At the same time, two

                     additional fluid properties, the velocity vector field and the turbulence kinetic energy, (TKE) are also used to guide the mesh optimization process.

                 This is achieved through the derivation of a metric tensor field. If we consider a single scalar field          𝜑 that we want to adapt our mesh to optimally

     resolve, we form a metric tensor, 𝜑       , by first computing the Hessian, H𝜑       , of that scalar field and defining

𝜑 =
1
𝜖𝜑
 H̄𝜑  , (8)

where 𝜖𝜑        is a user-defined weight for field 𝜑 (𝜖𝜑                can in some sense be considered a requested error—a smaller value leading to a larger 𝜑 and

                     consequently a finer mesh). The Hessian encodes information about the curvature of the scalar field and includes both spatial and direction infor-

                       mation; we desire finer mesh resolution at location and in directions where curvature is high, and coarser resolution where the solution is close to

linear. H̄𝜑                       indicates t hat we are interested in the magnitudes of curvatures when deciding on optimal mesh resolution and do not care about the

                      sign. Once metric tensor fields have been calculated for all the scalar fields (for the velocity, vector we consider each component separately), we

            wish to adapt to, a final metric is obtained through superimposition of the individual metrics.30         At this stage, additional constraints on the total num-

                        ber of elements in the calculation, and/or maximum and minimum edge length, and the maximum rate at which edge lengths can vary in space can

                      all be incorporated. The metric can then be used to measure the length of vectors—primarily the edge lengths of elements. A perfectly optimized

                       mesh in physical space is defined as one, which is made up of unit length edges in metric space. The inhomogeneous and directionally dependent

                         nature of the Hessians, and hence the metrics, thus leads to a mesh which is variable in both space and direction (ie, is potentially anisotropic). Sub-

                     sequently, an optimization functional is defined which measures how well the current mesh achieves this goal, and a series of topological operations

                       are performed on the current mesh to improve this agreement. These operations include edge collapse and splitting, and face to face and face to

 edge swapping. 19 30,                   Finally, conservative mesh to mesh interpolation is used to transfer solution data from the old to the new mesh. 31 3 2,  The entire

               mesh optimization process is conducted every user-defined number of time period, termed the adaptation period Tadapt     . Further information on the

           mesh optimization process, including its parallelisation, may be found in other works 17 19 30 3 3- , ,    and the references therein.

  3 T U R B I N E P A R A M E T R I Z A T I O N

       Our ALM follows the standard approach of Sørensen and Shen 34   and Troldborg et al 35      in which the turbine blades are represented by rotating virtual

                     lines—the actuator lines (ALs). Point forces are computed along each AL , (at each blade element's midpoint) using the relative velocity U extracted

                  from the fluid solver by evaluating the globally-defined finite element solution at these points, the solid body velocity Ub      of each point, and the lift

                      and drag coefficients obtained from look-up tables using airfoil data for the blade element's respective profile. Extra care has been taken for the

               elements near the blade tip for which the tip loss correction model of Shen et al 36           is used. The tower behind the turbine is also incorporated by
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   DESKOS AND PIGGOTT 1269

       adopting a model similar to Sarlak et al 37                 —the tower is represented by an actuator line with element having a cylindrical cross section of constant

  drag coefficient C D        = 1 and a time-dependent lift coefficient C L               , which is “tuned” in order to reproduce the Von Kármán street behind the cylinder,

C L    = ( )A sin 2𝜋ft , (9)

              where A is the amplitude of the “dynamic lift force” and f U= ×0 2. ∞∕Dtower            is the Strouhal number, based on the uniform velocity and the diam-

    eter of the tower D tower                       . For all simulations presented in this work, the hub and nacelle of the turbines are not modelled. The final ALM forces are

                projected onto the fluid mesh and represented in the governing equations via the momentum source term F T        . To ensure a smooth transition from a

    concentrated point AL force f A L     to the source term F T      , a smoothing interpolation function 𝜂𝜖  is used.

𝜂𝜖 =
1

𝜖3𝜋3 2∕
exp


−
 r 2

𝜖 2


, (10)

                          where  r is the distance of the mesh point from the AL node and 𝜖 is a smoothing parameter selected after taking into account the mesh size, drag

 force CD     , and chord size c, a nd Velem            is the volume of the element in which the AL node lies,

  𝜖 = max


c

4
 , 4 3


V elem,
cCD

2


, (11)

       consistent with the recommendations of Martínez-Tossas et al.38

  4 M O D E L V A L I D A T I O N

                    The newly implemented ALM is validated using data from a series of “Blind Test” workshops organized by NoWiTech and NoCOWE and

                that was obtained from the wind tunnel facilities of the Norwegian University of Science and Technology (NTNU), 22 2 3,     We will refer to the

                       two papers that reported the data as “blind tests” or when mentioned individually as “blind test 1” (BT1) and “blind test 2” (BT2). The

                           wind tunnel facility used for the two blind tests is 11.15 m long, 2.72 m wide, and 1.8 m high. In (BT1) a single turbine with rotor diam-

         eter D H= 0.894 m, hub height equal to hub                   = 0.817 m is placed at a distance of 2D from the wind tunnel inlet. The turbine has three

             blades consisting of 1 4% NREL S826 airfoils, a tower (support structure) with diameter D tower         = 0.11 m and is designed to operate opti-

                     mally for a tip speed ratio of 𝜆 = 6. For BT1, power and thrust coefficients are reported by Krogstad and Eriksen 22      for a large range of tip

                speed ratios (5-11.5) while wake statistics including the stream-wise velocity deficit and the turbulence kinetic energy for   𝜆 = 6. On the

              other hand, BT2 involves wake predictions from two similar turbines (with slightly different diameters D 1     = 0.944 m and D2   = 0.894 m

                 FIGURE 1 Schematic representation from the two “Blind Tests” set ups [Colour figure can be viewed at wileyonlinelibrary.com]
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   1270 DESKOS AND PIGGOTT

                      where the subscripts 1 and 2 correspond to the “Front” and the “Rear” turbines, respectively) operating i n-line. The front turbine is located at

2D2                = 1.788 m from the tunnel's entrance while the rear is placed at a distance 3D 2              = 2.686 m from the first as shown in Figure 1. BT2 reports three

        operational scenarios, in which the front turbine operates with 𝜆1 = ΩR U∕ ∞       = 6, and the rear with 𝜆 2           = 4, 7, and 2.5. In both BT1 and BT2, the

         mean free-stream velocity was measured to be 10 m s−1              whereas the vertical profile of the ambient turbulence intensity found to be nearly uniform

                            with a value of . For our computations, we also assume a uniform velocity and TKE profiles with initial and inlet conditionsI %≈ 0 3. U = 10 m s−1

    and k = 1.31 10−3 m2 /s2                   , respectively, while the turbulent frequency is also considered to be uniform and equal to 𝜔 .= 0 5 s−1    . Finally, the tower

                 model is enabled for all the wind tunnel simulations with the lift coefficient given a value of A          = 0.3, consistent with the study of Sarlak et al.37

   4.1 Mesh convergence study

                       The design power coefficient from the single turbine experiments (BT1) is used as a representative quantity for our mesh size and time step con-

                      vergence studies. For the mesh convergence study, we consider six set-up cases by assuming two mesh types (uniform fixed and adaptive) and three

    minimum element edge lengths h                           = 0.1 m, 0.075 m, and 0.05 m, as shown in Table 1, while the same time step𝛥t = 0.005 s is used for all simulations.

                      We should note here that the adaptive simulations are also restricted by a maximum edge length of 0.5 m. Additionally, all adaptive simulations

      were conducted using an adaptation period T adapt                 = 2.5 s. On the other hand, the time step convergence study considers three time step sizes

                        𝛥t = 0.02;0.01;0.005, corresponding to approximately 25, 50, and 100 time steps per rotor revolution, and using the finest mesh ( 0.05 m) forh =

            both the fixed and adaptive mesh. The lift and drag coefficients for the        14% NREL S826 section are taken from Sarlak 39     and include data spanning a

   Reynolds number from 4 × 10 4    to 4 × 106            and angles of attacks from−10 to 25 as shown in Figure 2. The turbine performance and thrust coefficients

        are computed based on the uniform upstream velocity U∞       and the nominal radius R D= ∕2 via

C T =
T

0 5. 𝜌𝜋R 2U2
∞

 , (12)

C P =
P

0 5. 𝜌𝜋R 2U3
∞

 . (13)

                       To obtain mean values for the power and thrust coefficients, we run long enough simulations and allow the turbines to undergo more than 100

                       revolutions. In Figure 3, the relative error in the predicted power coefficient is plotted against the average number of elements used in the simula-

                      tions. We observe that for a given minimum element edge length, the two approaches (fixed and adaptive mesh) yield very similar relative errors.

                       However, the adaptive mesh method required a smaller number of elements due to the optimum and flexible use of the underlying mesh within the

                  computational domain. Therefore, within the ALM/uRANS configuration considered here, the minimum edge length in t he mesh can be considered

                      the primary factor determining the accuracy of the model, while adaptivity is used primarily to reduce the overall number of degrees of freedom,

                 and therefore the associated computational cost. Later, we will further demonstrate the potential advantages of mesh-adaptivity by undertaking

      TABLE 1 Table of simulation set-up cases

           Case Min. Mesh size h [m] Average. Num. Elem. Mest type Tag

     01 0.1 234 098 Fixed FC

     02 0.075 561 611 Fixed FM

      03 0.05 1 699 635 Fixed FF

     04 0.1 Adaptive169 939 AC

     05 0.075 351 688 Adaptive AM

     06 698 2360.05 Adaptive AF

              FIGURE 2 Lift and drag coefficients as a function of the angle of attack (AoA)39           used for the model validation [Colour figure can be viewed at

wileyonlinelibrary.com]
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                 FIGURE 3 Convergence study with respect to spatial and temporal resolution [Colour figure can be viewed at wileyonlinelibrary.com]

                          FIGURE 4 Blind Test 1: Horizontal mean stream-wise velocity profiles a t x D∕ = 1, 3, and 5. The plotted lines correspond to: fixed coarse (FC) ( ),

   fixed medium (FM) (                        ), fixed fine (FF) ( ), adaptive coarse (AC) ), adaptive medium (AM) ), adaptive fine (AF)( ( ( ), and the symbols
(          ) to the experimental values reported by Krogstad and Eriksen 22       [Colour figure can be viewed at wileyonlinelibrary.com]

                    large-scale wind farm simulations. In that case, the substantially fewer elements required during the spin-up period of the wake development leads

                         to an important saving in CPU time. On the other hand, the temporal convergence study (right-hand side of Figure 3) shows that as we reduce the

                       time step (and thus increase the number of time steps used during one rotor revolution), the accuracy of the model converges to the element-based

               maximum obtainable accuracy. Again, the plotted figures correspond to simulations using the minimum edge length h      = 0.05 m. Therefore, the ele-

                      ment edge length and the time step used in all simulations presented hereafter will be based upon this preliminary convergence study. We should

                        also note that once we have selected an element edge length f or our analysis, the magnitude requirement on the time step is entirely dictated by

                        the ALM and not the stability of the fluid solver, which allows for a far more relaxed condition assuming a Courant number of near unity.

   Lastly, the smoothing parameter                    𝜖 varies with the element's edge length and for all simulations hereafter is taken equal to 2.5 times the edge

     length, which also satisfies Equation 11.

   4.2 Wind tunnel tests

                       Having established that the element edge length determines the accuracy of our model, we will present the wake predictions from BT1 for all six

                           set-up cases described in Table 1 using the smallest time step 𝛥t = 0.005 s, while results for the power and thrust coefficients as well as the wake

                      predictions of BT2 are presented only the fine mesh-adaptive, in order to maintain clarity. Starting with the wake profiles, we present three hori-

        zontal profiles downstream of the single turbine at x                   ∕ =D 1, 3, and 5 for BT1 and the three horizontal profiles downstream of the rear turbine at

x            ∕ =D 1, 2.5, and 4 for only the first scenario (𝜆2                   = 4) from BT2. Figures 4 and 5 show the mean stream-wise velocity and the TKE for BT1, while

              Figures 6 and 7 show the mean stream-wise velocity and the stream-wise turbulent stresses u′u′        for BT2. All quantities are time-averaged after a

                  spin-up period, which is taken to be approximately 1 s and have been normalized by the upstream velocity U∞       and presented as a function of the

   normalized horizontal distance y∕R.

                        Similarly, to resolve the wake field in BT2, only the refined adaptive case was used, and for brevity, we present the wake predictions only from

             scenario 1. We should also note that in order to obtain the Reynolds stress u′2            , we make use of the isotropy turbulence relation k u= 3 ′ 2∕2. Su ch

                     an assumption is not appropriate when the turbulence stresses are highly anisotropic, which may explain the large discrepancies in Figure 7 for

x                      ∕ = D 1. However, better estimates are obtained for the other two downstream profiles. Flow anisotropy was also found to affect the predictions

                   of the wake for BT1. This is an inherent inability of all turbulence models, particularly for the estimation of TKE. 40

                     Looking at integrated rotor quantities such as the power and thrust coefficients, an overall good agreement is observed between the ALM pre-

                        dictions and the wind tunnel measurements. Results are shown for both BT1 and BT2 in Figure 8. The only large discrepancy that can be observed

            in Figure 8 is for scenario 2 of BT2 (rear turbine operating with              𝜆 = 7). In that case, the power coefficient exhibits a discrepancy of 457.14%

                     in comparison with the measurements, which can be attributed primarily to the ALM limitation rather than the modelling of the wake. Indeed,
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   1272 DESKOS AND PIGGOTT

                           FIGURE 5 Blind Test 1: Horizontal TKE profiles at x D∕ =1, 3, and 5. Line colouring the same as in Figure 4 [Colour figure can be viewed at
wileyonlinelibrary.com]

                         FIGURE 6 Blind Test 2: Horizontal mean stream-wise velocity profiles at 1, 2.5, and 4. Only the adaptive fine (x D∕ = ) solution and the
  experimental data (          ) are shown [Colour figure can be viewed at wileyonlinelibrary.com]

                         FIGURE 7 Blind Test 2: Stream-wise turbulent stress profiles at ) solution and the experimentalx D∕ = 1, 2.5, and 4. Only the adaptive fine (
 data (          ) are shown [Colour figure can be viewed at wileyonlinelibrary.com]

                       FIGURE 8 Power and thrust coefficient curves as computed by the present model using the adaptive fine mesh and as measured by Krogstad and

Eriksen 22    and Pierella et al 23              plotted against the tip speed ratio 𝜆 [Colour figure can be viewed at wileyonlinelibrary.com]

  Pierella et al 23                     reported this scenario as the most challenging one for TPMs. This is due to a non-uniform span-wise pressure experienced by the

                     blades of the rear turbine, necessitating the use of blade-resolved simulations to accurately predict the lift and drag coefficients of the individual

 blade elements.

                       Still, the results from both BT1 and BT2 give us confidence that the proposed adaptive methodology is both faster and more accurate than the

                    fixed mesh one. However, applying mesh adaptivity in laboratory scale (wind tunnel) experiments cannot demonstrate its full potential. This is due
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                        to the high blockage created in the wind tunnel which necessitates the use of the finest mesh resolution almost everywhere in t he domain. To better

                     demonstrate the potential benefits of mesh adaptivity, we present in the next sections simulations for the Lillgrund offshore wind farm and discuss

        some options that can further reduce the computational time.

     5 T H E L I L L G R U N D O F F S H O R E W I N D F A R M

5.1     Parametrization of the wind farm

                       The Lillgrund offshore wind farm is located near the southern coast of Sweden and has recently attracted the interest of the research community as

     a benchmark for numerical model validation. 4 8, ,15 ,41            Model validation is achieved through comparison with supervisory control and data acquisition

                       (SCADA) system measurements and it primarily tests the ability of the model to predict power losses along a row of turbines for different wind

            directions. Part of the SCADA data are accessible via an online technical report 24          while the complete information used for the validation can be

                extracted from the validation studies just mentioned, and in particular from the studies of Nilsson et al 4    and Creech et al.15    The wind farm consists

                      of 48 Siemens SWT93-2.3 MW ( Siemens Wind Power, Hamburg, Germany) distributed in eight rows (A-H) as shown in Figure 9. For our simulations,

        we consider the Southwestern statistically dominant wind direction (43◦  / 222 ◦              ), and we align the coordinate axis system (x y- ) with the rows A, B,

               etc resulting in a layout where the aligned row turbines have a 4.3 rotor diameter spacing.

                        To parametrise the turbines making up the wind farm, we need to make a number of assumptions as their exact blade geometry and a irfoil char-

              acteristics are not publicly available. The available information does include the turbines' rotor radius R       = 46.5 m, the hub height Hhub    = 65 m, and

          the thrust and power coefficients as a function of wind speed.24               For the rest of the turbine parameters, we adopt the approach of Nilsson et al4 who

                considered a downscaled version of the conceptual NREL 5 MW turbine as presented by Jonkman et al42      and confirmed its suitability by comparing

                      the thrust and power (through torque) output for different wind speeds. Here, however, we consider an up-scaled version of the “Blind Test” tur-

                          bine, scaled up by approximately a factor of 100. To confirm the validity of our choice, we present in Figure 10 the thrust and power coefficients for

         velocities varying from 5 m/s to 11 m/s, similar with.4                 So far in Section 4.2, we have expressed both the thrust and power coefficient as a function

                          of the tip speed ratio 𝜆. As an active control strategy, we assume that the turbine will simply adjust its angular velocity in accordance with the opti-

         mum tip speed ratio, which was found to be around                   𝜆 = 6 as shown in Figure 8. This assumption is justified in part by the good agreement between

                      the up-scaled “Blind Test” turbine and the Siemens SWT-93 manufacturer's curve shown in Figure 10. Here, it is worth emphasizing that a recent

    investigation by Deskos et al 43                   showed that when wake predictions are made the need for mesh resolution is primarily driven by the velocity deficit,

                   which inherently relates to the thrust coefficient. Therefore any turbine parametrization that accurately captures the thrust force would result in a

  similar computational mesh.

  5.2 Mesh strategies

                    For the simulations presented here, two mesh strategies are investigated, namely, the fixed (but pre-refined, ie, variable resolution) and fully dynam-

                     ically adaptive meshing. Considering that the problem at hand is inherently multi-scale and a number of length scales, spanning from the individual

               turbine wake's turbulence length scale to the far larger atmospheric mesoscales usually in the order of        (200 m), need to be resolved, the two

     selected meshing strategies are the following:

                         FIGURE 9 Layout of the Lillgrund offshore wind farm. Rows A, B, etc are aligned with the x–axis of the coordinate system [Colour figure can be

  viewed at wileyonlinelibrary.com]

Printed by [U
niversity O

f Exeter - 144.173.241.226 - /doi/epdf/10.1002/w
e.2253] at [10/09/2020].



   1274 DESKOS AND PIGGOTT

           FIGURE 10 Comparison of between the real power and thrust coefficient (CP  and CT            ) and the up-scaled “Blind Test” turbine as a function of the

         upstream wind speed [Colour figure can be viewed at wileyonlinelibrary.com]

                         1. a large domain of dimensions 10 km (200 m) everywhere expect for an inner region× 10 km× 1 km is considered with a mesoscale resolution 

                        with prescribed resolution using an edge length equal to h = 20 m (in the subsequent discussions this is referred to as the pre-refined region

 [PRR]), and

                   2. a large domain of the abovementioned dimensions and mesoscale initial resolution everywhere without the a priori chosen inner region

           refinement, but with mesh-adaptivity enabled and operating over the whole domain and a minimum allowed edge length of h    = 20 m specified.

                The simulations were performed for a case with a PRR assigned in an area of 4 km             × ×6.5 km 0.16 km (see Figure 11), and three adaptive simula-

        tions in which different frequencies of mesh adaptations (Tadapt                 = 2.5 s, 5 s, and 10s) were applied. The selection of the PRR was performed through

                          a “trial and error” approach as the width and the height of the individual turbine wakes were not known a priori. Therefore, our goal was to create

                      a domain which has the refined region covering the wake region but does not extend excessively beyond this point. An alternative approach (which

                      would arguably represent a fairer comparison to the adaptive approach) would be to assume no knowledge and simply use the minimuma priori

                        edge length over the entire domain, but this would of course result in a huge problem size. For the mesh adaptive simulations, the adaptation period

                    is selected from a larger number of user-defined parameters available t o us such as the elements' maximum aspect ratio, the minimum/maximum

                        element ratio, etc. This option is considered in order to understand its impact on reducing the overall CPU time in the present uRANS set-up. The

                    selection of mesh adaptivity frequency as a key parameter is motivated by the computational cost (runtime penalty) associated with it, particularly

                    during the interpolation process. Indeed, mesh adaptations can be seen as a potential bottleneck step in the computations, as load-rebalancing rep-

                     resents a data migration overhead and the application of relatively costly interpolation methods to be used (eg, Galerkin projection) to transfer the

                        information from the previous mesh to the new one. The application of a Galerkin projection method is necessitated here by the use of a discontinu-

          ous function space, as the recent study of Farrell and Maddison 32            showed that a consistent interpolation is not suitable for discontinuous fields. For

                the present simulations, we consider the wind speed to be constant, and therefore, the required frequency of the mesh adaptation is not expected to

                        vary with time, except for when the wakes have converged. However, if longer simulations are to be undertaken in which the wind speed is expected

                        to vary with time, the frequency of the adaptations may be adjusted during the course of the simulation to better capture the wake dynamics. It

                        should be noted of course that a varying wind direction would also necessitate a larger PRR in the fixed mesh case, leading to substantial additional

                        computational costs. Finally, other parameters such as the element edge length size h have been excluded as in Section 4, we showed that there is

                     a direct correlation between the size of the underlying mesh and the model's accuracy. Thus, changing the frequency with which these adaptations

                         occur is a key remaining parameter, which can be varied in order to reduce the overall CPU time while maintaining a similar accuracy for the turbine

             performance and wake predictions. The latter will also be reassessed later in this section.

  5.3 Simulation setup

                       Moving on to the simulation set-up, for the purpose of these simulations, we assume uniform initial and inlet mean velocity and TKE profiles (U0  = 8

m s−1     and k = 0.31 m2 /s2                    , which corresponds to a turbulence intensity 5.7 = %). On all other boundaries, we apply free-slip velocity and zero

     gradients for all other quantities (                𝜕 𝜕 , , ,∕ n(u v w k, 𝜔) = 0). The selected inlet and boundary conditions considered herein are not representative of the

               levels of shear that the turbine wakes will experience within a realistic atmospheric boundary layer. However, as a first approach, we will demonstrate

                     the benefits of mesh adaptivity by imposing a uniform incident velocity and TKE profile and therefore based on the selected adaptation metrics

                        (velocity and TKE) not need to refine outside the wake region. The accuracy of our choice is also discussed later, when the numerical results are

                       compared with the observed SCADA data and some discrepancies are observed. It should be remembered that the focus of this study is to compare

                       the PRR solutions with the mesh-adaptive ones, and the observed data is added only to show the overall performance of the model. Future studies

        will consider more complex scenarios in which the mesh will also be further controlled in a manner that allows for anisotropic gradation in the vertical

                      direction only, outside the wake region. Nevertheless, to obtain a quasi-steady solution for the far wake field we time-march the solution with a

   constant time step of                           Δ =t 0.1 s and the solution for a total number of 4000 time steps. The final wake solutions are shown in Figures 12 and 13, for
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                   FIGURE 11 Schematic representation of the two mesh strategies considered for the Lillgrund offshore wind farm test case. The pre-refined
                            region is centred around the middle of the y -axis while it starts 3 km from the domain inlet and ends 0.5 km before its outlet [Colour figure can be

  viewed at wileyonlinelibrary.com]

                      FIGURE 12 Fixed mesh simulations: From left to right a horizontal cross-section at hub height of the underlying mesh, the stream-wise velocity u x

             and the turbulent intensity TI are shown [Colour figure can be viewed at wileyonlinelibrary.com]

     FIGURE 13 Adaptive mesh simulations (T adapt                   = 2.5 s): From left to right a horizontal cross section at hub height of the underlying mesh, the

  stream-wise velocity ux              and the turbulent intensity TI are shown [Colour figure can be viewed at wileyonlinelibrary.com]

           both the fixed and adaptive mesh (using the smallest adaptation period Tadapt           = 2.5 s) simulations. In addition, the power estimates normalized by

          the median of the production of the front row turbines Pmd        (similar to quantities considered by Nilsson et al4      ) are presented and compared against

      the measured SCADA data in Figure 14.

                  The two approaches' (adaptive and fixed mesh) results exhibit very similar behaviour both qualitatively and quantitatively as observed in

              Figures 12 and 13. An important feature in both solutions is the dissipation of the inlet TKE due to the assignment of a turbulence frequency required

                      for the dissipation of the turbine wakes. The increased dissipation creates a moving front for the inlet TKE which however disappears after about

                       2000 time steps. This impacted on the adaptive mesh since the TKE field was used within the definition of the metric controlling mesh optimiza-

                          tion. The impact of the TKE inlet front is discussed in more detail in the next subsection. Next, the power production trends are also found to agree
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                     FIGURE 14 Normalized power computed by the fixed-mesh (black line) and the mesh-adaptive (red line) simulations for turbines in Row A-H and

       compared against the measured data (dots) of Dahlberg 24       [Colour figure can be viewed at wileyonlinelibrary.com]

                       well with measurements as shown in Figure 14. The only major discrepancy observed in the plots (rows A-H) is the over-prediction of the relative

                      power of the second turbine. This discrepancy may be attributed to our selection of uniform inflow conditions, as the amount of computed shear

            and wake asymmetry will be underestimated. Similar trends were also observed by others 4 8, ,15        who adopted a log-law profile, although the discrep-

                     ancies between the experimental values and their LES results appear to be much smaller. Nevertheless, the power production as predicted by the

                         three adaptive simulations at the final time level are essentially identical and therefore only one of the three is plotted in Figure 14. The mean rel-

                      ative error over all turbines between the CFD simulations' power prediction and the measured data amounts to 7.38% for all three adaptive mesh

                      simulations while it takes the value 8.02% for the fixed-mesh ones. This result confirms our initial hypothesis that varying the frequency of mesh

                        adaptations will not affect the accuracy of the model predictions in the case of the uRANS approach employed here. On the other hand, a small

                     difference between the fixed-mesh and the adaptive mesh simulations' power predictions is observed; this can be attributed to the ability of the

                       adaptive simulations to better resolve the wake field by applying an optimum element aspect ratio, as was also shown for the wind tunnel tests.

  5.4 Computational efficiency

                      Returning to a key objective of our investigation, which is to examine the computational efficiency of the two proposed mesh strategies, it was

                     hypothesized that the computational cost of the adaptive simulations should be lower than that for the fixed pre-refined mesh simulations, as well

                      as the computational cost becoming smaller as the adaptation period is increased. In addition, the same or similar accuracy should be achieved when

                the same minimum edge length is used. To test our hypothesis, we conducted simulations using one fixed and three adaptive meshes. The simulations

                           were run in parallel using MPI on a total of 80 processing cores (four nodes each of 20 cores) on the cx1 cluster at Imperial College London. The

                    pre-refined simulations required approximately 86 hours to complete which is considered as a reference value. We should mention here that the

                      absolute value of the required CPU time would differ for different algorithms or code implementations. For this reason, we present the CPU times

                  for the adaptive mesh simulations normalized by the CPU time for the pre-refined mesh case. Here, the term “CPU time” refers to the wall-clock time

                      multiplied by the number of processing cores. This CPU time is dominated by the actual run time of the jobs and auxiliary computational procedures

                        such as the decomposition and re-partition of the mesh were found to result in trivial computational times in comparison. With this in mind, we start

                         by presenting the temporal evolution of t he number of fluid mesh elements in Figure 15; the number of elements are seen to follow a similar trend

    for all three adaptive cases.
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                     FIGURE 15 Left: Number of tetrahedral elements used for the underlying mesh as a function of the elapsed simulation time, Right: Convergence

                      of the relative power of the rear row of turbines—individual lines for each turbine are plotted here [Colour figure can be viewed at

wileyonlinelibrary.com]

                               FIGURE 16 From left to right: A horizontal slice at hub height (H =65 m) through the adaptive mesh at 0 s, 100 s, and 400 s, and having in total

                     100 760, 1 649 459, and 2 558 880 elements in the computational domain, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

                            The simulations begin with a spin-up of the mesh in the vicinity of the turbines and a moving front starting from the inlet. The latter, is a result of

                           the dissipation of the turbulent kinetic energy in the inlet and disappears after about 50 s. After this spin-up period, and between 50 s to 100 s, the

                       number of elements are slightly reduced due to the “dissipation” of the moving front, after which the element counts start to increase again with

                        a constant rate after 150 s. Finally, the number of elements becomes constant after approximately 380 s at which time a steady state solution has

                      been reached for the far field. A similar trend for the count of elements/degrees of freedom was also obtained by Kirby et al. 16   In their simulations

                       of the full Lillgrund wind farm, they observed a strong linear spin-up curve due to wake transients, and subsequently a flattened peak where the

                     wakes have started interacting with each other, and small variations in the mesh due to wake-wake and turbine-wake interactions were found. Such

                     fluctuations are not observed however in the dynamic mesh evolution of the present simulations, which can be attributed to the low-pass temporal

                        filtering incurred by the uRANS equations. On the right hand side of the same figure, we have plotted the evolution of the relative power (P∕Pmd )

             for all the back-row turbines against the elapsed time, for one mesh-adaptive case (T adapt            = 2.5 s) and the PRR simulation. It can be observed that

                         the relative power of the individual turbines converges to near its final value long before 380 s. The evolution of the adaptive mesh is presented via

                    horizontal and vertical slices through the domain in Figures 16 and 17. Note that slices through completely unstructured tetrahedral meshes do

                         result in complex polygons and slivers, but these images do convey the spin up of the mesh as it resolves the developing wakes. Zoomed pictures of

                      the vertical profiles are also shown in Figure 17 to demonstrate the element gradation (particularly the higher aspect ratio of the elements) near

     the edge of the wake field.

                     Element-wise, the plots (Figure 15) of the three element counts for the adaptive mesh simulations remain well below that for the pre-refined

                        simulation line until the end of the simulations, and thus we may argue that since the adaptive mesh simulations always use a smaller number of

                     elements than the fixed-mesh ones, and that the Fluidity solver scales approximately linearly with the number of elements, then the adaptive mesh

                     simulations should require a much lower CPU time. For the adaptive mesh simulations, however, additional CPU “penalties” are imposed due to the

                      various stages of the mesh adaptation procedure itself. Thus, the resulting CPU time can be significantly impacted by the frequency of these mesh

                     adaptations. In addition, there is also potential for unequal balancing of the elements across the MPI processes (although a dynamic load balancing

                     step is incorporated within the parallel mesh optimization procedure). The fact that a fixed number of processing cores is utilised throughout the

                simulation, and that this number is unlikely to be optimal from a parallel scaling perspective given the significant changes in element count during the

                    course of the adaptive mesh simulations, can also impact on computational efficiency gains. The actual CPU required by our numerical simulations

                     confirm our initial hypothesis. For the pre-refined simulations a total of 6880 CPU hours were required, while 5641.6, 4974.24, and 4747.19 CPU
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                               FIGURE 17 Left: A vertical slice along the x y-axis passing through the centre of the domain ( = 5 km) for the adaptive mesh at 0 s, 100 s, and 400 s

                       (from top to bottom) having in total 100 760, 1 649 459, and 2 558 880 elements in the computational domain, respectively, and zoomed-in
      snapshots from the final adaptive mesh (t                = 400 s at different locations. Right: A three-dimensional view of the computational mesh and stream

 wise velocity ux                       at t F=100 s using a crinkle slice passing through hub height. Iso-contours of the magnitude of the turbine source term T  are also
                        shown to identify the location of each turbine. The iso-contour level is chosen small enough such that all turbines are visible [Colour figure can be

  viewed at wileyonlinelibrary.com]

                         FIGURE 18 CPU time required by the adaptive simulations in the three scenarios (A, B, and C), normalized by the CPU time required for the PRR

       simulation [Colour figure can be viewed at wileyonlinelibrary.com]

             hours were required for the adaptive mesh simulations using mesh adaptation periods of (Tadapt           = 2.5 s, 5 s, and 10 s), respectively. From these

                       results, we may make three observations. First, by switching to the adaptive approach the CPU time is reduced by 18 even when making relatively%

                   frequent mesh adaptation operations. Second, by reducing the frequency of mesh adaptations additional reductions in the CPU time are achieved

                         to 27.7% and 31%, respectively. Finally, the number of 80 processors, while it can be optimal in terms of scalability in the case of the pre-refined

                            region, it is not always so for the adaptive ones. This is due to the fact that during the spin-up period, a relatively small number of elements will be

                    distributed across a large number of processors and the computational cost will be dominated by the MPI communications between the partitions.

                       In order to further optimize the CPU usage of the adaptive simulations, we have re-run the same simulations but this time starting the parallel

        computation on a smaller number of processing cores (Nproc                = 20), and as the overall problem size grows we start and stop the simulation (using

                   checkpoints) and increase the number of cores to the final 80 as the element counts increase. We should emphasize here that prior knowledge of the

                     final mesh from the original adaptive simulations using 80 processing cores was essential in better designing the decomposition of the domain when

                     checkpoints were used. Here we present three cases, the first one (case A) is the original case in which, the simulations were run on 80 processors for

                   the whole time period, the second one (case B) starts with 20 processors, then after the first spin–up time (t        = 100 s) the simulation is stopped and

                                 restarted with 80, while the last one (case C) uses 20, 40, 60, and 80 at the periods 0 to 100, 100 to 200, 200 to 300, and 300 to 400 s , respectively.

                              The cumulative CPU time for the three cases is shown in Figure 18. It is observed that cases B and C result in a smaller overall CPU time than case A.

                        In addition, while in case C the decomposition/repartition is performed four times, this does not lead to smaller CPU times. Instead, case B seems to

                  behave better, although by a small amount. Based on this, we may infer that if a moderately large number of elements (     ≃25 000) is used per processor

                         after the first spin-up time (t = 100 s), changing the number of processors more often does not lead to significant changes in the observed CPU

                       times. This might be due to the fact that Fluidity exhibits excellent scalability properties (both strong and weak) when a small number of processors

         is used, and enough elements are distributed to each processor.
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 6 D I S C U S S I O N

                     In this work, we presented the implementation and validation of a uRANS-based, mesh-adaptive ALM which is able to optimize the number of

                      elements/cells that are required to resolve the wake field within a full-size wind farm. Our ALM implementation is based on the original model

   of Sørensen and Shen 34                     with additional models being used to account for blade end effects and the impact of the tower shadow on the near

                 wake field. The fluid flow is resolved using a uRANS formulation of the governing equations and the k–      𝜔 SST turbulence closure model. The

                 developed Fluidity-ALM model was validated against wind tunnel measurements before attempting full-scale wind farm simulations. For the wind

                    farm simulations, we selected the Lillgrund offshore wind farm for which numerous previous studies and observed data are available. The effect

                  of mesh-adaptivity on reducing the computational cost was also examined with particular emphasis being given on processors' load balancing,

             especially during the transient period where the number of elements follows a linear trend.

                    More specifically, for the developed model a detailed mesh convergence study was undertaken for both the fixed and the adaptive mesh

                       approaches showing that for a given edge length h the two mesh strategies yield similar results for the integrated rotor characteristics such as the

                   power or thrust coefficient. Moreover, as the element's edge length is reduced, the model predictions for the power coefficient CP   converge to the

                    experimental reference values. Looking at the wake solutions on the other hand, mesh-adaptivity provides better estimates for the wake field, par-

                       ticularly in regions where large shear (velocity gradients) exist. This is due to the ability of the mesh optimization algorithm to identify these regions

                         and allow elements with large aspect ratios to align with the underlying gradients in solution fields. A fixed mesh does not have such an ability and

                         therefore a better solution at these regions can be obtained only by further refining the mesh locally. The validation of the model using the two Blind

 Tests (BT1                       & BT2) shows that both the near and far wake field can be accurately predicted given that enough resolution is used. More satisfactory,

                      however, are the predictions from the second validation case, BT2. Deep array wake modelling has been a great challenge for many wake models

                       and it is a crucial step towards accurately predicting offshore wind farm power output. The results from the comparison with BT2 give us confi-

                      dence that, although only two turbines in-line are used, we are capable of obtaining high-fidelity wake solutions for the back row turbines, when

        both operate at peak conditions (optimal tip speed ratio).

                     Looking at the Lillgrund offshore wind farm simulation results, the power predictions from each row (A–H) agree well with measured data from

Dahlberg. 24                     The largest discrepancy between the model predictions and the measured data is observed on the second turbine in each row. This

                     systematically appears in all simulations, and is believed to be due to the uniform velocity profile chosen for the simulations. Nevertheless, the

                    two modelling approaches using the fixed and the adaptive mesh strategies yield almost identical results for the power coefficients. This re-affirms

                     our conclusions from the mesh convergence study which states that the turbine predictions are not dependent on the mesh strategy but rather

                          the edge-length used at the location of the rotor. As far as the wake field is concerned, although there is lack of data for comparison, the accuracy

                        of the power coefficients predictions suggests that the model is able to capture the magnitude of the wake-deficits along each row, at least in a

                      time-averaged sense. In addition, mesh adaptivity was found to be a f avourable choice leading to a reduction in the overall computational cost while

          maintaining the same accuracy. Moreover, by changing the adaptation period T adapt           , we were able to further reduce the overall computational cost

                  without compromising the model's accuracy. An additional reduction of the computational cost was also observed when the adaptive simulations

                      were initialized on a smaller number of CPUs, with this number increased in response to the spin–up of the computational mesh. The adaptation

                     period was considered to be constant during each individual simulation. Again, this is not necessarily an optimal approach, since the frequency of

                     the adaptations should always be based on the state of the dynamics. However, such an approach requires relatively complex error measure designs

                   which are beyond the scope of the present work. For an effective variable-frequency mesh-adaptive approach, a “goal-based” a posteriori error

                       measure would be good to consider. This seeks to generate the optimal mesh at every instance purely for maximizing the accuracy in a user-defined

                      “goal” (e.g. power or thrust), and thus resolution is not wasted at locations and times where it does not contribute to this goal.

                        Regarding the limitations of the present approach, we should begin by discussing the validity of our choice to use a uniform inlet velocity with slip

                  conditions on both the bottom and the top of the domain instead of a log-law profile and a rough wall model at the bottom. Such a simplification of the

                       flow conditions were found to affect the ability of the model to predict the power output in the large-scale simulations, particularly for the second

                      turbine of each row. Future formulations of the mesh-adaptive solver should consider a boundary layer, although extra care should be taken to avoid

                      extensive refinement near the bottom of the domain via for example using a vertically variant mesh gradation technique. In addition, by adopting a

          uRANS framework, many of the higher frequency interactions between the flow and the turbines were ignored and thus limiting the information that

                  can be extracted from the simulations. To capture such effects, turbulence–resolving simulations need to be undertaken. Creech et al 15  studied the

                   Lillgrund offshore wind farm using the Fluidity solver (although using different discretization options) with an LES formulation and mesh adaptivity

                    and found good agreement with SCADA data. However, their study did not examine the efficiency of mesh-adaptivity, e.g. through comparisons with

                 fixed-mesh simulations. Inherently, an LES solver which employs mesh-adaptivity techniques will impose additional constraints on the frequency of

                       mesh adaptations and the elements' aspect ratios, while a far smaller edge lengths and time step will be required. All these additional factors put the

                     efficiency of coupling mesh adaptivity with an LES solver and conducting wind farm simulations in question and therefore additional studies will be

                        needed to assess its applicability. On the other hand, coupling a uRANS solver with mesh adaptivity for wind energy problems may be seen as more

                appropriate, particularly for regional scale simulations that focus for example on the interaction of adjacent wind farms,44     or when the wind farm

       simulations are used within an adjoint–based optimization algorithm. 45

                     Based on the above, the mesh-adaptive uRANS framework was shown t o be an appropriate and efficient tool for large-scale wind farm sim-

                   ulations. The observed computational efficiency of the present simulations suggests that the same approach may be applied to more complex
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                      configurations such as those of onshore wind turbines placed over an uneven terrain and that mesh-adaptivity could be used to solve for the

           ensemble-averaged flow quantities (mean velocity, TKE) while requiring substantially fewer CPU hours.
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