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A B S T R A C T   

This work analyses the higher harmonic wave elevations of focused wave groups based on the assumption of a 
Stokes-type nonlinear structure. A fully nonlinear potential flow model is employed to generate nonlinear wave 
groups by the NewWave theory, which represents an extreme event in a random sea state. We present a 
methodology to generate high-quality nonlinear wave groups of a narrow-banded wave spectrum in a numerical 
wave tank. A phase-manipulation approach is employed to accurately extract the higher harmonic elevations. 
The elevation spectra show clean separation of the first four harmonics. Comparisons with the experimental data 
show remarkably good agreements for the higher harmonics. We confirm the Stokes-type underlying nonlinear 
structure of the harmonic elevations in focused wave groups. This is found by simulating wave groups with 
varying wave steepness and calculating the corresponding elevation coefficients of the higher harmonics. The 
harmonic coefficients are found almost constant against varying steepness. An implication of the Stokes-type 
structure for the nonlinear wave elevations is that, it allows us to estimate the higher harmonics based only 
on the linear component. This is successfully demonstrated by reconstructing a nonlinear focused wave group 
using the linear NewWave model and the coefficients at its higher harmonics.   

1. Introduction 

In a random sea state, an extremely large wave will be part of a wave 
group, rather than in a regular wave train (Adcock and Taylor, 2009). 
Extreme waves are usually the most critical to the survival of offshore 
structures. Records of those giant waves from instruments in the ocean, 
for example, the well-known Draupner wave described in Walker et al. 
(2004), have driven extensive research on the scientific explanation of 
the formation of them and understanding their characteristics (Adcock 
et al., 2015; Wang and Balachandran, 2018). Attempt to recreate similar 
extreme waves in the laboratory using a deterministic wave energy 
spectrum has also been made in recent years such as by Buldakov et al. 
(2017). An engineering interest of studying the extreme waves is that 
these waves would produce significant nonlinear loads which could 
cause fatal damage to offshore structures. Understanding the charac
teristics of the nonlinear extreme waves improves the prediction of wave 
loading hence the design of offshore structures. 

Extreme waves in the ocean are believed to form when the wave 
components associated with a large number of wave frequencies in a 
random sea come into phase, see a detailed explanation in Fedele et al. 

(2016). That is the focusing of a transient wave group. The focused wave 
group has been demonstrated to be the average shape of large waves in a 
random sea (Whittaker et al., 2016). Mathematically, the representation 
of the focused wave group is the scaled autocorrelation function as re
ported in Lindgren (1970). The simplest linear model for a focused wave 
group might be the NewWave presented originally in Tromans et al. 
(1991). The ability of the NewWave model to represent an extreme wave 
has been shown in a few sets of field data in deep, intermediate and 
shallow water depths (Walker et al., 2004; Whittaker et al., 2016; Taylor 
and Williams, 2004). Meanwhile, for model tests or simulations in a 
wave tank, an obvious advantage of using a focused wave group against 
a random sea state is the time savings because the focusing occurs in a 
very short period of time. In such a short period the near field wave is 
free from contamination of possible reflection from the far end of the 
tank. 

Most of the research work mentioned above investigate the general 
shape of a focused wave group in the linear, or at most second order 
regime. It is well known that higher harmonics can be expected resulting 
from the strong nonlinear wave-wave interactions among the fre
quencies components. The nonlinear Schr€odinger equation provides a 
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good approximation for the nonlinear evolution of the wave group in 
deep water (Lo and Mei, 1985; Trulsen and Dysthe, 1996; Henderson 
et al., 1999; Adcock and Taylor, 2016). In the experimental work in 
Johannessen and Swan (2001) and the numerical study in Gibson and 
Swan (2007) and Adcock and Taylor (2016), it is shown that 
non-linearity in focused wave groups leads to significant changes to the 
shape of the groups – groups become taller and narrower with large 
waves moving towards the front of the groups. Nonetheless, the prop
erties of those individual higher harmonics (than the second) remains 
almost unexplored due to the difficulty in accurately extracting the in
dividual higher harmonics. There are two reasons. The first is that the 
higher harmonic components could be very small, for experiments 
possibly below the accuracy of confidence of the instruments. The sec
ond is that the higher harmonic components cannot be easily and cleanly 
isolated from the total nonlinear wave field due to the spectrum overlap 
between neighbouring orders of harmonics. Therefore, further study has 
to be conducted to extract cleanly the higher harmonics and to under
stand the nonlinear behaviour of the harmonics in an extreme wave. 

Since capturing accurately the small higher harmonic elevations 
might be difficult in a tank test, it becomes practical to employ nu
merical models to replicate the process of the formation of the extreme 
wave. A numerical model that can simulate all nonlinearities associated 
with the wave group might be the time-domain fully nonlinear numer
ical wave tank (NWT). The NWT model we employed in this work 
basically represents a rectangular physical tank and simulates the wave 
generation and absorption. Without any assumption to the wave prop
agation and evolution (except for fluid viscosity), the fully nonlinear 
simulation will not lose any higher harmonic components arising from 
wave-wave interactions. Innovative approach needs to be implemented 
in the NWT to cleanly extract the harmonics, since we are concerned 
with the properties of each harmonic. 

The method used in this study for decomposing higher harmonic 
components from a focused wave group is the phase manipulation 
recently presented in Adcock et al. (2019). A ‘phase-inversion’ or 
two-phase method has been adopted by Baldock et al. (1996) and 
Borthwick et al. (2006) for analysing the second-order wave elevations. 
With the two-phase method, one can obtain the odd and even harmonics 
by combining two realizations or response time series where the two 
wave groups are of 180∘ out of phase. Fitzgerald et al. (2014) general
ized the two-phase method to a four-phase method. Similarly, the first 
four harmonics can be separated by combining the four wave groups of 
90∘ phase apart. The approach assumes a Stokes-type harmonic structure 
of the wave elevations for a narrow-banded wave group. The regular 
wave amplitude A can be generalized to a time-varying amplitude AðtÞ
for the focused wave group owing to the fact that the amplitude AðtÞ is 
modulated and slowly varying near focusing. 

This work presents a fully nonlinear potential flow model for simu
lating unidirectional focused wave groups in a rectangular tank. Inviscid 
fluid and irrotational flow is assumed following the potential flow the
ory. The fully nonlinear free surface boundary conditions are fulfilled 
during the time-domain simulation, with the exact free surface captured 
in time marching. A higher order boundary element method (HOBEM) is 
adopted to solve the boundary value problem enclosing the fluid of in
terest. We generate the focused wave group from a given wave energy 
spectrum. Phase control is implemented at the wavemaker in order to set 
apart the desired wave phases. The primary purpose of this work is to 
investigate the characteristics of the higher harmonics in a focused wave 
group via clean harmonic decomposition, and to confirm the underlying 
structure of these harmonics. Upon confirmation of the Stokes-type 
nonlinear structure, the ultimate goal is to approximate the higher 
harmonics using the linear wave group which is simply the NewWave. 

This paper is organized as follows. Section 2 briefly presents the 
governing equations of the nonlinear potential flow based NWT, the 
boundary conditions, and the boundary element method. Implementa
tion of generating the focused wave group is also described. Section 3 
focuses on validation of the numerical model by comparing with the 

existing experimental results. Section 4 presents the main results of this 
work. We first revisit the cases in Baldock et al. (1996) and use the 
two-phase method to extra the odd and even harmonic wave elevations. 
The four-phase method for extraction of the higher harmonics is then 
demonstrated by simulating the recent experiments. The separation is 
found very clean up to 4th harmonic. We confirm the Stokes-type 
structure of the higher order nonlinear elevations through simulations 
with varying wave steepness. The agreement between the fully 
nonlinear simulation and the test data is remarkably well. The harmonic 
elevation coefficients for the wave group defined similarly in the Stokes 
wave model are obtained. Finally, we reconstruct the higher harmonic 
wave elevations from the linear wave group with the obtained harmonic 
coefficients. Concluding remarks are drawn in the last section. 

2. Mathematical formulation 

2.1. Model description 

We employ a numerical tank technique to simulate the focused wave 
groups. The rectangular numerical wave tank is defined in Fig. 1. Similar 
to a physical tank, a narrow long tank is modelled. The schematic figure 
consists of a wavemaker at the left boundary of the tank and a numerical 
beach placed on the surface at the far end of the tank. The coordinate 
system Oxyz has its origin on the undisturbed water surface in the centre 
of the tank, with z-axis pointing upward. The computational domain 
includes all the wetted boundaries. In particular, SWM and SF represent 
the wavemaker and the free water surface, respectively. It is a three- 
dimensional tank and the two side walls are not shown in the diagram. 

The fully nonlinear potential flow theory is well established. We 
briefly summarize the governing equations here. On the assumptions 
that the fluid is incompressible and inviscid, and the flow irrotational, a 
scalar velocity potential φðx; y; z; tÞ can be defined, u ¼rφ, that satisfies 
the Laplace equation in the fluid domain, 

r2φ¼
∂2φ
∂x2 þ

∂2φ
∂y2 þ

∂2φ
∂z2 ¼ 0: (1) 

For the fully nonlinear potential flow model, the fully nonlinear ki
nematic and dynamic conditions on the free surface SF in the Lagrangian 
description are to satisfy 

DX
Dt
¼rφ; (2)  

Dφ
Dt
¼ � gzþ

1
2
rφ⋅rφ; (3)  

where D
Dt ¼

∂
∂t þ v⋅r is the material derivative with respect to fluid par

ticle velocity v on the free surface, X denotes position of points on the 
free surface, and g is the gravitational acceleration. Difficulties arise to 
incorporate the nonlinear effects of these boundary conditions into the 
solution procedure. In the fully nonlinear simulation, the exact free 
surface has to be captured at every time step. To update the nonlinear 
free surface in the time domain, the Mixed Eulerian-Lagrangian (MEL) 
algorithm is applied in the model. The time marching scheme is the 
Runge-Kutta 4th order method, which has been shown numerically 
stable and accurate. 

The boundary condition on the wavemaker SWM is defined as 

∂φ
∂x
¼UðtÞ; (4)  

where UðtÞ is the velocity on the wavemaker along the x direction. The 
velocity will be prescribed using the NewWave theory introduced later. 
In the model, a piston-like wavemaker is implemented. The imperme
able boundary condition on side walls is 

∂φ
∂n
¼ 0: (5) 
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The numerical beach or artificial damping layer in Fig. 1 is to absorb 
the wave energy at the far end of the tank. In this model a simple method 
is adopted, i.e. modifying only the kinematic and dynamic free surface 
boundary conditions of Eq. (2) and Eq. (3). By adding a damping term 
over the damping layer length, the modified free surface boundary 
conditions become 

DX
Dt
¼rφ � νðxdÞðX � XeÞ (6)  

Dφ
Dt
¼ � gzþ

1
2
rφ ⋅rφ � νðxdÞφ (7)  

where xd is the distance from a point located in the damping layer to the 
staring point of the damping layer, νðxdÞ is the damping coefficient and 
Xe ¼ ðxe; ye; 0Þ is the reference location at the still water surface. The 
damping coefficient is imposed to be continuous and tuned to the peak 
frequency ω of the wave group. The damping coefficient is computed 
according to the method in Ferrant (1993). 

A higher-order boundary element method is employed to solve the 
boundary value problem. The numerical method is briefly summarized 
here. The boundary integral equation (BIE) can be formulated by the 
Green’s second identity. Considering a Green function Gðx;x0Þ, which is 
a velocity potential at a field point x0 due to a distributed source at x. It 
satisfies the Laplace equation r2G ¼ 0 in the fluid domain except at its 
singular point x0. Applying Green’s second identity by integration over 
the fluid domain surface enclosed by all the boundaries, we have 

Cðx0Þφðx0Þ¼

ZZ

S

�

Gðx; x0Þ
∂φðxÞ

∂n
� φðxÞ

∂Gðx; x0Þ

∂n

�

dS (8)  

where Cðx0Þ is the solid angle at field point x0, and n is measured from 
the source point x. The solid angle Cðx0Þ, however, is difficult to evaluate 
directly. In the model we follow the treatment in Teng and Eatock Taylor 
(1995) who employed the physical argument that a uniform potential 
applied over an enclosed fluid domain produces no flux. Therefore, by 
considering a homogeneous Dirichlet problem where a uniform field, i.e. 
φ ¼ constant 6¼ 0, is specified over the entire integral boundary, the 
above Eq. (8) becomes 

Cðx0Þ¼ �

ZZ

S

∂Gðx; x0Þ

∂n
dS: (9)  

In this way, the solid angle Cðx0Þ can be expressed as only a function of 
the boundary shape which is easily evaluated. 

A simple 3D Rankine source and its image with respect to the hori
zontal seabed (z ¼ � h) can be chosen as the Green function. The Green 
function is then written as 

Gðx; x0Þ¼
1

4π

�
1
R1
þ

1
R2
þ

1
R3
þ

1
R4

�

(10)  

where 

8
>>>>><

>>>>>:

R1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x0Þ
2
þ ðy � y0Þ

2
þ ðz � z0Þ

2
q

R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x0Þ
2
þ ðyþ y0Þ

2
þ ðz � z0Þ

2
q

R3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x0Þ
2
þ ðy � y0Þ

2
þ ðzþ z0 þ 2hÞ2

q

R4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x0Þ
2
þ ðyþ y0Þ

2
þ ðzþ z0 þ 2hÞ2

q

:

(11) 

To numerically discretize the boundaries, we introduce the shape 
functions Njðξ; ηÞ in each boundary element, where ðξ; ηÞ is the local 
element coordinate. Thus, we are able to express the position coordinate 
xðξ; ηÞ, the velocity potential φðξ; ηÞ and its derivatives within this 
element in terms of the nodal values. The boundary integral equation Eq. 
(8) can be written in its discretized form as 

Cðx0Þφðx0Þ ¼
X

n¼1

N X

m¼1

M �

Gðxm; x0Þ

�
X

j¼1

K

Njðξ; ηÞ
�

∂φ
∂n

�

j

�

�
∂Gðxm; x0Þ

∂n

hX

j¼1

K

Njðξ; ηÞφj

i�

ωmjjJmðξ; ηÞjj

(12)  

where K is the total number of nodes in the element, i.e. 6 for a trian
gular element and 8 for a quadrilateral element, N the total number of 
elements over the computational boundaries, M the number of sampling 
points in each element in the standard Gauss-Legendre method, ωm the 
integral weight at mth sampling point, and Jmðξ; ηÞ the Jacobian trans
formation from the global to the local coordinate. Details of calculating 
the integral weight and Jacobian in the standard Gauss-Legendre 
method can be found in Gernot et al. (2008). For each field point we 
have a BIE as Eq. (12). With the BIEs for all nodes on the boundaries, a 
linear equation system can be assembled and solved. Details about the 
higher-order boundary element method for solving the above boundary 
value problem and its numerical implementation can be found in Feng 
(2015). 

To accelerate the computation we implement parallelization to the 
code using OpenMP (2015). The computational effort is mainly at 
assembling the dense asymmetrical matrix of influence coefficient from 
BIEs. The assembling has to be performed every time step as the 
nonlinear free surface is updated each time step. Therefore, we mainly 
parallelize the assembling subroutine for the influence matrix. In addi
tion, an efficient open-source solver LAPACK (2017) is adopted to solved 
the linear equation system. The simulations were carried out on the high 
performance computing facility ARC (Richards, 2015) at the University 
of Oxford with multithread. 

2.2. Wave generation 

Key to the work here is to generate high-quality focused wave 
groups, as an extension of the numerical tank designed for regular waves 
(Bai et al., 2014; Feng and Bai, 2015, 2017). We generate a focused wave 
group by prescribing the proper phases of each frequency component. 
For a given wave energy spectrum SðωÞ, the free surface elevation and 
the velocity potential based on the linear NewWave model can be 
calculated as 

Fig. 1. Schematic diagram of a wave tank.  
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ηIðx; tÞ¼
X

n¼1

N

Ancos½knðx � xcÞ � ωnðt � tcÞ� (13)  

φIðx; z; tÞ¼
X

n¼1

N

An
ωn

kn

coshknðzþ hÞ
sinhknh

sin½knðx � xcÞ � ωnðt � tcÞ� (14)  

where An is the wave amplitude, ωn the wave frequency, kn the wave
number of the nth component. The water depth is h. The focused time is 
set as tc and the focused position xc. The total number of component N 
should be large enough to reproduce the desired spectrum and N ¼ 200 
is adopted in this study. The amplitude AnðωÞ of each wave component is 
calculated by 

AnðωÞ¼A⋅
SðωnÞΔω

PN
n¼1SðωnÞΔω

(15)  

where A ¼
PN

n¼1An is defined as the linearized wave group amplitude. 
The NewWave profile is simply the scaled autocorrelation function, i.e. 
the inversed Fourier transform of the energy density spectrum for the 
underlying sea state, and the amplitude components are proportional to 
SðωnÞΔω=σ2. The sum σ2 ¼

PN
n¼1SðωnÞΔω is the variance of the wave 

elevation. 
In the numerical tank as in a physical tank, to make the desired wave 

group, a proper transfer function fTðωÞ has to be applied to the pre
scribed displacement and velocity for the wavemaker. Therefore, the 
desired free surface elevation at the wavemaker is ηIðxWM; tÞ= fTðωÞ and 
the velocity distribution on the wavemaker becomes UðtÞ ¼ ∂φIðxWM ;z;tÞ

∂x =

fTðωÞ with xWM the position of the wavemaker. For the piston-type 
wavemaker used in the model, there is a π=2 phase difference between 
its displacement and the wave elevation on the wavemaker. The above 
equations will generate waves focusing at xc at the time instant tc, ac
cording to linear wave theory. However, as the wave group evolution is 
nonlinear in this model, both the focusing location and time would 
slightly shift due to nonlinear dispersion and wave-wave interactions. 

For decades a classic linear transfer function proposed by Ursell et al. 
(1960) has been used in wave generation problems. The function based 
on the linear wave theory is expressed as 

fTðωÞ¼
2 sinh2 kh

sinhðkhÞcoshðkhÞ þ kh
: (16) 

In our model, we compute the numerical transfer function by car
rying out regular wave simulations. For a particular depth, regular 
waves of varying frequencies at very low amplitude (kA < 0:01) are 
generated and the transfer function is then estimated from the normal
ized (by the input amplitude) steady-state surface elevation. First-order 
position control of the wavemaker using the numerically obtained 
transfer function is applied in our numerical model. 

A comparison of transfer functions of the numerical tank with the 
Ursell model is shown in Fig. 2 for the water depth 1.8 m. The difference 
is mostly in the frequency range 3–6 rad/s. It is established that the 
linear Ursell model Eq. (16) works best in shallow water regime at kh <
π=10. In our case with h ¼ 1:8 m, the corresponding regime of wave 
frequency is ω < 0:75 rad/s. This is consistent with Fig. 2 that the 
numerically obtained function value is approaching the Ursell model 
when frequency becomes small. In our simulations, the input fre
quencies cover a range of ω ¼ 1:4 � 8:1 rad/s, in which the Ursell model 
is not accurate. For very short waves or higher wave frequencies, the 
asymptotic value for both the Ursell model and the numerical model is 
2.0. The difference we see from Fig. 2 is that the numerically obtained 
transfer function value reaches 2.0 at a faster rate. Given the appreciable 
discrepancy between the numerical and the simple Ursell model, we 
adopt the numerically obtained transfer function in our simulations. For 
wave groups from a wave spectrum, a much finer frequency resolution is 
required between the cut-off frequencies (0:5fp � 3:0fp). A fitting func
tion is needed to estimate the transfer function value at each frequency 

component discretized from the wave spectrum. Here we adopt a simple 
polynomial fitting at the order of 6, which works fine in the frequency 
range of interest, as shown in Fig. 2. 

2.3. Phase-manipulation approach 

A good model for the nonlinear harmonic elevations appears to be 
that they follow a ‘Stokes-like’ form thus 

ηtotal ¼ AS11 cos ϕþ A2ðS20 þ S22 cos 2 ϕÞ þ A3ðS31 cos ϕþ S33 cos 3 ϕÞ
þA4ðS40 þ S42 cos 2 ϕþ S44 cos 4 ϕÞ þ O

�
A5�

(17)  

up to fourth order of the amplitude A. The coefficients Smn represent the 
coefficients corresponding to super/sum (m ¼ n) and sub/difference 
(m � n ¼ 2) harmonics and ϕ ¼ ωt þ ϕ0 is the phase of the linear 
component of the wave. The ϕ0 is the initial phase to be prescribed at the 
wavemaker. In the case of a wave group, it is assumed the time varying 
amplitude is modulated such that it is slowly changing near the focus 
time. This requires the wave spectrum to be narrow-banded (Mei et al., 
2005). 

To extract the different harmonics we use a phase-manipulation 
technique following Fitzgerald et al. (2014) who studied the wave 
forces on a surface-piercing column. We alter the phase at the wave
maker in certain increments. This allows us to combine different phase 
results in order to separate different harmonics. In particular, we make 
the incoming waves with a phase shift of ϕ0 ¼ 0�, 90�, 180�and 270�. We 
then submit them into Eq. (17). By linearly combining the four corre
sponding responses η0, η90, η180 and η270, the first four separated har
monics read 
�
η0 � ηH

90 � η180 þ ηH
270

� �
4¼

�
AS11þA3S31

�
cos ωt; (18a)  

ðη0 � η90þ η180 � η270Þ
�

4¼
�
A2S22þA4S42

�
cos 2 ωt; (18b)  

�
η0þ ηH

90 � η180 � ηH
270

� �
4¼A3S33 cos 3 ωt; (18c)  

ðη0þ η90þ η180þ η270Þ
�

4¼A2S20þA4S40 þ A4S44 cos 4 ωt: (18d)  

where the accuracy is truncated to fourth order and the superscript H 
denotes the Hilbert transform of the time signal. Clearly, to separate the 
harmonics up to fourth order using this approach, we have to repeat 
each simulation four times. In a relative simpler model the odd and even 
harmonics can be separated using only the η0 and η180 signals. The 
averaged difference and sum of the these two signals give, up to 4th 
harmonic, 

ðη0 � η180Þ
�

2¼
�
AS11 þA3S31

�
cos ωt þ A3S33 cos 3 ωt; (19a) 

Fig. 2. Transfer function for the numerical wave tank with water depth 1.8 m.  
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ðη0þ η180Þ
�

2¼A2S20 þ
�
A2S22þA4S42

�
cos 2 ωt þ A4S44 cos 4 ωt: (19b) 

We adopt the four-phase method in this work, in order to obtain 
cleanly separated harmonics up to 4th order. Overlaps between the first 
and third, second and fourth harmonics could occur in the two-phase 
method, as discussed in Fitzgerald et al. (2014). For instance one has 
to apply a bandpass filter to further separate the cos ωt term and the 
cos 3 ωt term from Eq. (19a). However choosing proper frequency 
bandwidth could be problematic when the bound harmonics associated 
with cos ωt have a significant overlap with the cos 3 ωt component. 

3. Convergence and validation 

We consider the experimental investigation performed by Baldock 
et al. (1996) who conducted the tests in a long rectangular tank. The 
tank is 20 m long and 0.3 m wide with a water depth of 0.7 m. To 
optimise the computational efficiency, a 10 m tank is simulated in the 
numerical model. The origin is set at the centre of the tank, i.e. xc ¼ 0:0 
m. We consider two cases in our numerical simulations, Case B and Case 
D which correspond to a broad-banded and narrow-banded wave spec
trum, respectively. Case B has a frequency range of f ¼ ð0:71 � 1:66Þ Hz 
and Case D with f ¼ ð0:83 � 1:25Þ Hz. In each case, two amplitudes A ¼
0:022 m and A ¼ 0:055 m of the wave group are simulated. 

3.1. Mesh convergence 

Convergence is of critical importance when it comes to the higher 
harmonics which is of our main concern here. The element size on the 
free surface shall be governed by the shortest wavelength and its higher 
harmonic components. We test three mesh configurations. As we 
simulate only unidirectional wave groups, two elements are distributed 
in the lateral direction. Mesh 1 corresponds to about 15 elements per 
shortest wavelength and Mesh 2 has nearly a twice denser mesh 
configuration and Mesh 3 has a total number of elements about three 
times that of Mesh 1. The three meshes have 6661, 11233 and 16833 
nodes, respectively, distributed over the computational boundaries. It 
shall be reminded that higher-order elements are adopted in the model. 
The normalized wave elevations at the middle of the tank x ¼ 0:0 m for 
the three mesh configurations are shown in Fig. 3(a) and the corre
sponding energy density spectra are displayed in Fig. 3(b). The dis
crepancies are almost invisible from the time histories except at some 
crests and troughs. One can tell the difference, however, from the energy 
density spectra. In order to show the small values at high frequencies, we 
plot the spectra in log scale. For frequencies less than 1.5 Hz, the spectra 
are identical for the three meshes. Relative large discrepancies appear 
between Mesh 1 and the other two mesh cases when f > 1:5 Hz. We 
adopt a mesh configuration similar to Mesh 2 in the following studies to 
compromise accuracy and computational efficiency. For the cases where 

a JONSWAP spectrum is used, we set the mesh density level according to 
the peak wavelength that dominates the wave group’s main character
istics. The mesh convergence is carefully tested as well because we are 
aiming at capturing the very small higher harmonic components. 

3.2. Effectiveness of damping zone 

The effectiveness of the damping zone is governed by the long wave 
components in a wave group. Despite the fact that the focus time regime 
is very short and the reflection from the end of the tank is not critical (an 
important advantage of using a focused wave group), it is worthwhile to 
check the reflection ratio for a particular setup. As it is well known that 
in a physical tank the long waves are difficult to be absorbed by the 
damping beach, we shall see the performance of the numerical damping 
layer in the present model when generating wave groups. Fig. 4 shows 
the free surface elevations for three different setups of damping length as 
1.0, 1.5 and 2.0 times the largest wavelength, λm. In Fig. 4(a) we can see 
the difference at the peaks and troughs near the focus time at x ¼ 0:0 m. 
A closer examination reveals that the peak elevation for the damping 
length 1:0λm is over-predicted while the peaks of the damping length 
1:5λm and 2:0λm are almost identical. It is clear from the elevations at the 
end of the tank x ¼ 4:9 m in Fig. 4(c) that there is about 1% reflection for 
the damping length 1:0λm while the reflection is only 0.2% and 0.02% 
for 1:5λm and 2:0λm, respectively. The reflected component is dominated 
by the wave group’s main frequency. This indicates that at most the first 
harmonic component of the wave group would be contaminated. 
Nevertheless, we apply a 2:0λm damping zone to ensure minimum 
reflection. 

3.3. Validation 

We now compare the fully nonlinear simulations with the laboratory 
tests reported in Baldock et al. (1996). The time histories of the wave 
elevations near the focus time for the broad-banded spectrum Case B are 
shown in Fig. 5 with two wave amplitudes A ¼ 0:022 m and A ¼ 0:055 
m. To demonstrate the nonlinear effect, linear prediction using the 
NewWave model is also included. With low wave steepness in Fig. 5(a), 
the numerical simulation, the measurement and the linear result are 
generally very close. Discrepancies arise between the linear and 
nonlinear results for higher steepness in Fig. 5(b). The nonlinearity 
clearly sharpens the crest and flattens the trough as expected. Better 
agreement is observed between the nonlinear model and the measured 
result. Note that the focus location for the steep wave is shifted down
stream at around x ¼ 0:3 m. The experimental observation in Baldock 
et al. (1996) shows constantly enlarged down shift with increasing 
amplitudes. The down shifting is known to be due to third-order 
wave-wave interactions in a wave group, and the distance of shifting 
depends on the nonlinearity and the spectrum bandwidth. 

Fig. 3. Convergence of mesh for a nonlinear focused wave group at the focus point x ¼ 0:0 m of Case B with A ¼ 0:022 m in Baldock et al. (1996). (a) The time 
history and (b) the energy density spectrum. 
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Similar conclusions about the down shift can be drawn from the 
narrow-banded Case D in Fig. 6. The difference is that, as the bandwidth 
reduces, the shift of the focus location is more pronounced. Fig. 6(b) 
shows the elevations at the focus position at x ¼ 0:8 m. The agreement 
between the numerical model and the measurement is very good, 
especially at the peaks and troughs. The linear model under-predicts the 
peak value about 30%. Nevertheless, to further confirm the accuracy of 
capturing the nonlinearity, one would need to compare the detailed 
individual harmonics at higher orders. This is one of the main objectives 
of this study and is demonstrated later. Here we have shown that the 
nonlinear numerical model is able to predict the nonlinear wave group 
very well, comparing with the linear model. 

4. Higher harmonic analysis 

The method of extracting the higher harmonics for focused wave 
groups is based on the phase-manipulation technique. In most of the 
previous studies such as in Baldock et al. (1996), Borthwick et al. (2006) 
and Zang et al. (2006), the two-phase or ‘phase-inversion’ method was 
used. In contrast to the four-phase method described in Eq. (18) which is 
used in this study, the two-phase method in Eq. (19) makes use of the 
time series of only the 0∘ and the 180∘ phases. The odd and even har
monic components can be separated. However, in the cases with strong 
wave-wave interactions the elevation energy spectrum would show 
overlapping between neighbouring frequencies (Fitzgerald et al., 2014). 
The two-phase method might not be able to separate all the harmonic 
components ‘cleanly’, thus the four-phase method is more appropriate to 

Fig. 4. Effects of different damping zone lengths on the free surface elevation at (a) x ¼ 0:0 m; (b) x ¼ 0:0 m near the focus time; (c) x ¼ 4:9 m. Case B with A ¼
0:022 m. 

Fig. 5. Comparison of wave surface elevation near the focus time for Case B in Baldock et al. (1996) (a) A ¼ 0:022 m, x ¼ 0:0 m; (b) A ¼ 0:055 m, the linear plot is at 
x ¼ 0:0 m and the nonlinear plot is at x ¼ 0:3 m. 
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obtain the accurate harmonics. In the following we first present briefly 
the separated odd and even harmonics by the two-phase method, then 
we focus on demonstrating the four-phase method and clean separation 
of the harmonics up to fourth order. 

4.1. Two-phase extraction 

We take again the above cases in Baldock et al. (1996) as an example. 
The decomposed odd and even harmonics of elevations near focusing for 
Case B and Case D with A ¼ 0:055 m are shown in Fig. 7(a) and (c) 
respectively. Their corresponding spectra are displayed on the right 
column. As discussed before, the nonlinearity characteristics for the 
narrow-banded and broad-banded spectra are different. This might be 
better illustrated from the separated spectra, i.e. the higher harmonic 

components. The spectra are plotted in log scale in order to identify 
clearly the energy distribution at higher harmonics. For the 
broad-banded Case B in Fig. 7(b), the separation seems to work well up 
to second order. The first harmonic in solid line is covered in the input 
range of (0.71–1.66) Hz with some tailing reaching 2.4 Hz. However the 
second harmonic in the dash line spreads in a very large frequency 
range, making it impossible to determine its harmonic bound. Any 
component above 3.0 Hz is not separated for both odd and even har
monics. For the narrow-banded Case D in Fig. 7(d), the first and third 
harmonics are easily identified from frequency distribution of the odd 
harmonics, though there might be some overlap between (2.0–3.0) Hz. 
The second sum harmonic becomes cleaner comparing with Case B. 
Ideally, the second harmonic shall cover the range of 2� ð0:83 � 1:25Þ
Hz, where (0.83–1.25) Hz is the linear range. Due to some energy 

Fig. 6. Comparison of wave surface elevation near the focus time for Case D in Baldock et al. (1996) (a) A ¼ 0:022 m, x ¼ 0:0 m; (b) A ¼ 0:055 m, the linear plot is at 
x ¼ 0:0 m and the nonlinear plot is at x ¼ 0:8 m. 

Fig. 7. Separation of the odd and even harmonics of the free surface elevations and their corresponding power spectra using the phase-inversion method. The top 
panel is for broad-banded Case B in Baldock et al. (1996) with A ¼ 0:055 m at x ¼ 0:3 m and the bottom panel is for narrow-banded Case D with A ¼ 0:055 m at x ¼
0:8 m. 
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redistribution at the first harmonic (tailing), the second harmonic fre
quency range is slightly broadened, up to about 3 Hz. One might be able 
to extract the individual harmonic component by frequency filtering, 
with carefully selected frequency range as done in Chen et al. (2018). 
Nevertheless, selection of frequency filtering range can be ambiguous in 
many cases. In terms of harmonic separation, the phase manipulation 
technique seems to work better for narrow-banded spectrum. Indeed 
narrow-band is one of the assumptions for Stocks expanssion to be 
applied to focused wave groups. 

4.2. Four-phase extraction 

We now apply the four-phase based method to extract the harmonics. 
The purpose is to explore the detailed underlying structure of the higher 
harmonic wave elevations. We set up a tank of 15 m long and 0.2 m 
wide, and the water depth is 1.8 m. A narrow-banded JONSWAP spec
trum is used. Its peak frequency is fp ¼ 0:429 Hz. The cutoff of input 
wave frequency is 0:5fp � 3:0fp. The JONSWAP spectrum in this range is 
discretized into 200 frequency components. For a focused wave group, 
we use the peak wave frequency and wavelength as its characteristic 
property. The water depth is intermediate with kph ¼ 1:48. Note that the 
Stokes wave theory breaks down at a shallow water depth. Various wave 
amplitudes are simulated. The setup of the case corresponds to the 
recent experiments conducted at the Kelvin Hydrodynamic Laboratory 
in the University of Strathclyde. Details about the setup of the experi
ments are described in the recent conference paper in Adcock et al. 
(2019). 

The time histories of the total wave elevations for the four phases at 
the centre of the tank x ¼ 0:0 m are shown in Fig. 8. The linear wave 
group amplitude is A ¼ 0:213 m. The elevations are normalized by A. 
The linear wave group is set to focus at t ¼ 25 s. The actual focus time 
would slightly delay and the focus location would shift downstream as 
discussed previously. The slight shift of focusing in time and position 
does not matter for the following analysis of the peak responses, because 
we compute the envelope of the time series instead of the maximum 
value. Without detailed calculation, from the figure the elevations of the 
four phases preserve a stable phase difference near the focus time, and 
they are within a same envelope as expected. 

Applying the linear combinations according to Eq. (18), the resulting 
four time histories of the first four harmonics are shown in Fig. 10. The 
corresponding spectra in log scale are shown in Fig. 9. The frequency is 
non-dimensionalized by the peak frequency. The separation of the first 
four harmonics, ηð1Þ;ηð2Þ;ηð3Þ;ηð4Þ, is very successful. No overlap is present 
among the four. The second subharmonic or difference ηð2� Þ covering 0�
2:0fp can be easily extracted from the fourth harmonic (the blue dot- 
dash line), as their frequency ranges are largely apart. The linear 
component covers the input frequency range. Higher harmonic fre
quencies are slightly broadened. For instance, the second sum covers the 
range of 1:0fp � 5fp. The peak frequency of each harmonic corresponds 
to nfp. For harmonics higher than 4th, the spectrum is down to the noise 
level and cannot be further separated. 

We see from the time histories in Fig. 10 that the peaks of the higher 

harmonics are nicely aligned with the linear, suggesting the wave crest 
can be significantly enhanced if the nonlinear components are consid
erable. In this case, the second harmonic peak is about 20% of the linear. 
The third and fourth harmonics are much lower. They are really local
ized, appearing within about 2 s near focusing. Yet, the small higher 
harmonics can excite possible large resonant structural response in the 
environment if the offshore structure’s natural frequency happens to be 
in this range. 

Direct comparisons of the elevations, particularly the higher har
monics, are made with the experimental results. The same approach was 
used in the experiments to obtain the harmonics. The results for two 
amplitudes A ¼ 0:134 m and A ¼ 0:213 m are shown in Figs. 11 and 12, 
respectively. We shift the time histories such that the focusing time is at 
t ¼ 0:0 s. The nth harmonics are normalized by An. For both cases, the 
linear elevations agree very well between the numerics and the experi
ments. The second difference ηð2� Þ shows a significant set-down of the 
wave group. The numerical result in Fig. 11(b) shows the typical set- 
down at focusing, which is a long but smooth component. Some wavy 
component appears in the experimental result due to the energy 
‘leakage’ from the linear or higher harmonics. The agreement is much 
better for A ¼ 0:213 m in Fig. 12(b), both the trough and the overall 
trend. 

Very good agreements are also observed in the second sum har
monics, except after the time t ¼ 7:0 s when a large component appears 
in the numerical result. This is believed to be due to the presence of the 
second-order error-wave generated at the wavemaker. The presence and 

Fig. 8. Time histories of the wave elevations for four phases for A ¼ 0:213 m. 
Te wave group has a JONSWAP spectrum with HS ¼ 0:426 m and fp ¼
0:429 Hz. 

Fig. 9. Decomposed elevation spectra for A ¼ 0:213 m from the four-phase 
method. The wave group has a JONSWAP spectrum with HS ¼ 0:426 m and fp ¼
0:429 Hz. Input wave frequency is 0:5fp � 3:0fp. 

Fig. 10. Decomposed harmonic elevations for fp ¼ 0:429 Hz and A ¼ 0:213 m 
from the four-phase method, for legend see Fig. 9. 
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effect of error-wave is extensively discussed in Orszaghova et al. (2014). 
The source of the error-wave could be the first-order position control of 
the wavemaker used in the model – its effect on the second-order 
component was discussed in Spinneken and Swan (2009). Neverthe
less, the error-wave is much delayed to the main wave group as higher 
frequency waves travel slower. It will not affect the magnitude of the 
main group. A relatively large discrepancy, particularly in phase, ap
pears in the third harmonic in Fig. 11(d). The experimental time series 
seems to have a trough focus at a time instant later than t ¼ 0:0 s, while 
the numerical result focusses at t ¼ 0:0 s. The phase modification due to 
third-order resonant wave-wave interactions, see recently Bonnefoy 
et al. (2016), could be the explanation for the delay in the focused wave 
group. However, the discrepancy is not observed for A ¼ 0:213 m in 
Fig. 12(d). Note that the third harmonic elevation is very small in value. 
Given the scrutinous comparison performed above, we are confident 
that the numerical model is highly accurate in predicting the higher 
harmonics of focused wave groups. At the same time, the four-phase 
decomposition approach is quite successful for the extraction of higher 
harmonics. 

Further insight can be revealed from the time evolution of the wave 
profile of each harmonic along the tank in Fig. 13 where the first three 

harmonics are shown. This is obtained by recording the wave elevation 
at every point along the tank. Applying the four-phase combination 
method to each point gives the responses at each harmonic in the time 
domain. We then plot the wave profile of each harmonic along the tank 
at every time step. This post-processing could be time consuming, 
depending on the resolution of the free surface mesh. In the figures, each 
line shows the wave profile at a certain time step. The bold red line 
shows the profile at the focused time. Note that the time steps for the 
three harmonics are different as they evolute at different time scales. 
The linear wave profile in Fig. 13(a) covers a time period more than 
three times longer than that in Fig. 13(c). We see that the linear wave 
group has a smooth focusing and de-focusing process with a relatively 
long wavelength. In Fig. 13(b) the error-wave behind the main group is 
visible, in the top left triangular zone. Generally the phase speed of the 
second harmonic is stable. In contrast, the third harmonic profile shows 
some randomness of its phase over the focusing and de-focusing time 
period. As explained, the reason might be the underlying third-order 
resonant wave-wave interactions causing energy transfer between 
different frequency components. It is also noticed that the third har
monic component only becomes significant near the focused time and 
near the focused location, i.e. it is compactly localized. However, it may 

Fig. 11. Time histories of the harmonic wave elevations at the centre of the 
tank for fp ¼ 0:429 Hz and A ¼ 0:134 m. 

Fig. 12. Time histories of the harmonic wave elevations at the centre of the 
tank for fp ¼ 0:429 Hz and A ¼ 0:213 m. 
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cause resonance if a structure is in presence which usually has a higher 
natural frequency than the linear frequency but near the triple 
frequency. 

To see the separated wave profile in space clearly, we present the 
decomposed harmonic elevations at the focused time along the center
line of the tank in Fig. 14. We see that the second harmonic elevation in 
space has the same phase with the first – it sharpens the peak and flattens 

the trough of the linear wave profile. The third harmonic profile is only 
visible near the focusing location x ¼ 0:0 m. 

4.3. Harmonic coefficients 

In view of the ‘Stokes-like’ harmonics of a focused wave group in Eq. 
(17), we can treat the time-varying amplitude as the envelope of the 
time series. Using the peak value of the envelope, we are able to compute 
the corresponding nth harmonic coefficient as 

Snn ¼
maxfΞðnÞg

An (20)  

where ΞðnÞ is the envelope of the time series. The envelope is computed 

by ΞðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðηðnÞÞ2 þ ðηðnÞH Þ
2

q

. The subscript H represents its Hilbert 
transform. 

To resolve the coefficient and the underlying structure of the har
monics, it is necessary to perform simulations using various wave am
plitudes. Fig. 15 shows the second and third harmonic coefficients S22 
and S33 against the wave steepness kpA ¼ 0:05 � 0:25. The cross is the 
experimental result. The short horizontal lines represent some theoret
ical predictions which are independent on the wave steepness. To keep 
the figure compact, we plot the horizontal lines over the range of kpA ¼
0 � 0:04. In Fig. 15(a) the solid black line is the prediction using the 
method presented by Dalzell (1999) with modification for a wave group. 
The original Dalzell model considers the wave-wave interaction of two 
waves. We extend the model for the wave group by considering the in
teractions between each possible pair of wave components in the group. 
The modified formulation for the second-order elevation is presented in 
the Appendix. The dot line is simply the regular wave Stokes 
second-order coefficient and the dot-dash line is the Stokes coefficient in 
deep water. The numerical second harmonic coefficient S22 shows more 
or less a constant value about 0.74 over the steepness range. There is 
slight increment when the wave is steep near kpA ¼ 0:20. This trend is 
consistent with the experimental results, where there is minor scat
tering. It should be borne in mind that in the tests the actual value of the 
second harmonic peak is in the level of millimetre or smaller, which is to 
the accuracy of wave gauges. For the numerical model, probing the 
small wave elevations is not an issue. The averaged numerical S22 agrees 
very well with the modified Dalzell model, and both are about 10% 
higher than the Stokes coefficient. The corresponding coefficient in deep 
water S22 ¼

1
2kp is much lower. This is expected since the wave nonlin

earity typically weakens with the increase of water depth. 
The third harmonic coefficient S33 of the experiments is more scat

tering than the second. The scattering seems to occur either at low 
steepness or high steepness ranges. For the very mild wave, possibly the 
wave gauges could not capture the tiny component at the third har
monic. For the relatively steep wave, the third-order resonant wave- 
wave interaction would occur, breaking down the ‘Stokes-like’ 
nonlinear structure. Nonetheless, the numerical results are still constant 
against the steepness. Again, the averaged numerical coefficient S33 is 
close to that of the experiments. The regular wave Stokes third-order 
coefficient underestimates the test results by about 30%. Though 
close, in any case the focused wave group is different from a regular 
wave. The nonlinear wave-wave interaction could play an important 
role in modifying the peak or trough of a focused wave group, especially 
the third harmonic. 

It might be interesting to study the variation of the harmonic coef
ficient against the wavenumber at a constant water depth. The second 
harmonic coefficient as a function of kph is depicted in Fig. 16. Here we 
investigate three water depths, i.e. h ¼ 0:5 m, 1.8 m, 10 m. In each 
figure, we plot results of the numerical model, the modified Dalzell 
model and the Stokes coefficient. For the small water depth in Fig. 16(a), 
we see a significant drop of S22 when kph < 1:0 at shallow-water regime. 
The numerical result seems to be between the Dalzell’s and the Stokes 

Fig. 13. Evolution of the decomposed free surface elevations along the tank 
with fp ¼ 0:429 Hz and A ¼ 0:213 m for (a) first harmonic; (b) second har
monic; (c) third harmonic. Each line shows the wave profile at a certain time 
step. Time step marches from the bottom line to the top line. The bold red line 
shows the profile at the focused time. The time steps for the three harmonics are 
different as they evolute at different time scales. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 14. Harmonic wave elevations at the focused time along the centerline of 
the tank for fp ¼ 0:429 Hz and A ¼ 0:213 m. 
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coefficients, with the Stokes coefficient slightly higher than the other 
two. The trend however changes when kph > 1:5. The Stokes coefficient 
is slightly lower. There is an intersection near kph ¼ 1:5, and similar 
intersection is present for the 1.8 m depth case in Fig. 16(b). In deep 
water, the coefficient increases almost linearly with kph. The discrep
ancies among the numerical results, Dalzell’s model and Stokes seem 
consistent. The same conclusion can be drawn from Fig. 16(c) with h ¼
10 m. It is worthy pointing out that we use a wave steepness about kpA ¼
0:1 for the numerical simulations. The second-order coefficient is in the 
order of A2. 

4.4. Estimation of higher harmonics from linear wave 

A primary purpose of obtaining the harmonic coefficients is to esti
mate the higher harmonics using the time series of the linear wave 

elevation ηð1Þ. The total wave elevation can be approximated as 

η¼ ηð1Þ þ S22A2
h�

ηð1Þ
�2
�
�
ηð1ÞH
�2i
þ S33A3

h�
ηð1Þ
�3
� 3ηð1Þ

�
ηð1ÞH
�2i

þ S44A4
h�

ηð1Þ
�4
� 6
�
ηð1Þηð1ÞH

�2
þ
�
ηð1ÞH
�4i

(21) 

We take the case where fp ¼ 0:429 Hz and A ¼ 0:213 m as an 
example. We compute the harmonic coefficient Snn according to Eq. (20) 
up to 5th order. The ‘Stokes-type’ structure indicates the harmonic 
component shall have the form bηðnÞ ¼ AnSnncosðnωt þ φnÞ, where AðtÞ is 
the linear amplitude (In practice, this can be obtained from the New
Wave model) and φn is the phase of the harmonic response. Note that the 
coefficient Snn is not a function of the wave steepness. Estimation of 
cosðnωtþφnÞ for each higher harmonic from the linear ηð1Þ and its Hil
bert transform ηð1ÞH is documented in the Appendix in Walker et al. 

Fig. 15. Harmonic coefficients of wave elevations for focused wave groups for fp ¼ 0:429 Hz with comparison against tests. The short horizontal lines are the 
theoretical predictions which are constants across kpA. 

Fig. 16. Harmonic coefficients of second-order elevation for varying peak frequency at three water depths (a) h ¼ 0:5 m; (b) h ¼ 1:8 m; (c) h ¼ 10 m.  
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(2004). 
The estimated time series of the harmonic elevations are shown in 

Fig. 17. The solid line is the direct results from the numerical simulation 
and the dash line is estimated using the reconstruction model Eq. (21). 
The harmonic coefficients Snn utilized in the reconstruction model are 
obtained from the numerical simulation. They are the averaged Snn over 
the varying kpA. We see that the overall reconstruction is successful up 
to 5th harmonic. The total elevation is well estimated. Small discrepancy 
appears at the second harmonic near the focus time. However, the 
possible error-wave after 30 s cannot be captured. This is not a surprise 
because the reconstructed higher harmonic elevations will not have any 
’wiggle’ following the main group. The reconstructed harmonics are also 
more symmetric about the focus time than the original extracted ones, 
because the linear component is essentially symmetric. From the total 
elevation, we see that the reconstructed elevation is almost identical to 
the original, except for the small discrepancy after 30 s which is due to 
the presence of the second-order error-wave. Again, the higher har
monic components above the third order are generally very small. Some 
noise seems to appear in the fifth harmonic. Nevertheless, we can 
reconfirm the underlying ‘Stokes-type’ structure of the nonlinear har
monics. We demonstrate that it is possible to estimate the higher har
monics of a focused wave group by its linear wave elevation with the 
harmonic coefficients. 

5. Concluding remarks 

We present a fully nonlinear potential flow model with imple
mentation of generation of focused wave groups. A phase-manipulation 
method is adopted to decompose the harmonic components of the 
nonlinear wave elevation. Mesh convergence at the higher harmonics is 
carefully carried out. The four-phase method is demonstrated successful 
for separating the higher harmonics in the nonlinear wave group. 

Direct comparison of the harmonic time histories is made with the 
recent experiments. The agreement is generally good. The second har
monic from the numerical model shows a ‘secondary’ group following 
the main group, which however is not present in the experiment. It is 
believed to be the effect of error-wave of the second order. The error- 
wave is much delayed and has no influence on the main group. Small 
discrepancies are also observed in the third harmonic elevation. While 
the third harmonic peak values are close for the numerical and experi
mental results, there exists a slight phase difference. This is explained by 
the phase modification resulting from resonant third-order wave-wave 
interactions, which may not be captured in the numerical model. 
Nevertheless, the absolute higher harmonic components are very small. 
The differences are not visible from the total elevations. 

The evolution of the decomposed higher harmonic wave profile is 
illustrated. Both the linear and second harmonics show smooth profiles 
along the tank. The third is localized and wavy due to its short wave 
length and possible phase modification. 

To confirm the Stokes-like structure of the higher harmonics, we 
simulate the wave groups with varying amplitudes. We compare the 
harmonic coefficients with both the tests and the theory at increasing 
wave steepness. The second-order coefficient S22 is almost constant 
against the steepness for the numerical results. Small variation is present 
in the test data. The second-order wave-wave interaction model by 
Dalzell (1999) is extended for a focused wave group. The modified 
Dalzell model shows good prediction, while the Stokes second-order 
model (for regular waves) slightly under-predicts the second-order co
efficient. For the third-order coefficient S33, the numerical results are 
almost constant with increasing wave steepness while the variation in 
the test data is considerable, especially when the steepness is either low 
or high. Again, the Stokes third-order model under-predicts S33. 

With the harmonic coefficients up to fifth order, we estimate the 
higher harmonics from the linear elevation. The reconstructed eleva
tions agree well with the original, confirming again the Stokes-type 
structure for the higher harmonics. The harmonic component 

coefficients are not a function of the wave steepness, suggesting one can 
estimate the harmonics from only the simple linear model for both mild 
and steep waves. While the second harmonic coefficient for the focused 
wave group can be directly computed from the extended Dalzell model, 
higher harmonic coefficients for any general case cannot be easily ob
tained, except running nonlinear simulations. Future investigations 
would be made to study the wave-wave interactions at the third and 
higher orders, leading to the quick estimation of the harmonic 
coefficients. 
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Fig. 17. Reconstructed harmonic elevations for fp ¼ 0:429 Hz and A ¼ 0:213 m 
using averaged coefficients obtained from the present numerical model. The 
nthe harmonic elevation is non-dimensionalized by An. 
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Appendix 

The mathematical model of second-order wave-wave interaction for two regular waves was presented by Dalzell (1999). We modify it for a focused 
wave group in a random sea state. This is done by considering every pair of two components in a wave group and summing up all the possible pairs. 
The formulation in Dalzell (1999) considers directional spreading. Here we set up the direction of all the wave component as zero, making it uni
directional. The regular wave-wave interaction resulting from two components in uni-direction has the second-order sum elevation 

ηð22Þ ¼
A2

1k1

4 tanhk1h

�

2þ
3

sinh2ðk1hÞ

�

þ
A2

2k2

4 tanhk2h

�

2þ
3

sinh2ðk2hÞ

�

þ A1A2Bp (A.1)  
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�
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�

�

�
ðω1 þ ω2Þ

2
þ gðk1 þ k2Þtanhðk1hþ k2hÞ

Dp

�

þ
ω1 þ ω2

2gDp

�
ω3

1

sinh2ðk1hÞ
þ

ω3
2

sinh2ðk2hÞ

� (A.2)  

Dp¼ðω1 þ ω2Þ
2
� gðk1þ k2Þtanhðk1hþ k2hÞ (A.3)  

where the subscript 1 and 2 stand for the quantities associated with the two wave components. A1;2 are the amplitudes, ω1;2 the frequencies, g the 
gravitational acceleration and h the water depth. Each wavenumber k1;2 still satisfies the linear dispersion equation ω2

1;2 ¼ gk1;2tanhðk1;2hÞ. Note that 
here only the second harmonic elevation is resolved from Dalzell’s result. The difference term and the mean elevation term are not included. 

In the focused wave group, as the phases of all components are aligned, the amplitude of the second-order wave elevation will be the summation of 
the elevations resulting from interactions between every two components. We have the following second harmonic elevation for the wave group 

ηð22Þ
group¼

XN

j¼1

XN

k¼j
ηð22Þ

jk (A.4)  

where N is the total number of components in the wave group and j; k are the indexes of any two components. 
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