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a b s t r a c t

Following the widespread use of solar energy all over the world, the design of high quality photovoltaic
(PV) cells has attracted strong research interests. To properly evaluate, control and optimize solar PV
systems, it is crucial to establish a reliable and accurate model, which is a challenging task due to the
presence of non-linearity and multi-modality in the PV systems. In this work, a new meta-heuristic
algorithm (MHA), called perturbed stochastic fractal search (pSFS), is proposed to estimate the PV pa-
rameters in an optimization framework. The novelty lies in two aspects: (i) employ its own searching
operators, i.e., diffusion and updating, to achieve a balance between the global exploration and the local
exploitation; and (ii) incorporate a chaotic elitist perturbation strategy to improve the searching per-
formance. To examine the effectiveness of pSFS, this method is applied to solve three PV estimation
problems for different PV models, including single diode, double diode and PV modules. Experimental
results and statistical analysis show that the proposed pSFS has improved estimation accuracy and
robustness compared with several other algorithms recently developed.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Solar energy is considered to be a promising renewable energy
because of its affluent availability and cleanliness. Solar photovol-
taic (PV) systems can convert solar energy into electricity and
supply power. It has been widely used for several decades and the
rapid growth is still continuing [1].

Mathematical models are important for control, optimization
and assessment of solar PV systems [2]. Several PV models have
been developed, among which the single diode model (SDM) and
the double diode model (DDM) are most widely used [3]. The
prediction quality of a PV model largely depends on the extracted
model parameters. Therefore, accurate and robust estimation of
model parameters is crucial for PV modeling.

1.1. Literature review

PV parameter estimation is often formulated as an optimization
problem to minimize the residual errors statistically. Due to the
non-linearity inherent in the dynamics and the noise involved in
ng.yue@strath.ac.uk (H. Yue),
the experimental current-voltage (IeV) data, PV parameter esti-
mation is usually a multimodal problem with multiple local opti-
mums [4]. Deterministic techniques have been proposed for solving
this problem, including the Lambert W-functions [5], the Newton-
Raphson method [6], and the iterative curve fitting [7]. Most of the
deterministic techniques are based on the gradient information.
They show powerful local search abilities, but likely fall into local
optimums. In addition, deterministic techniques require strict
conditions such as the differentiability and convexity, which re-
stricts their wide applications.

More recently, meta-heuristic algorithms (MHAs) have been
developed and employed for PV parameters estimation problems.
Inspired by natural phenomena, MHAs have advantages in solving
complex global optimization problems [8,9], and have no re-
quirements such as continuity, differentiability or convexity for the
optimization problems [10,11]. There are three groups of MHAs
used for parameter estimation, i.e., the classic MHAs, the latest
MHAs and the hybrid MHAs.

The classic MHAs include algorithms such as differential evo-
lution (DE), particle swarm optimization (PSO), harmony search
(HS), artificial bee colony (ABC) and teaching-learning-based opti-
mization (TLBO). DE has a simple structure and exhibits good ac-
curacy, but its optimization results highly depend on two control
parameters, namely the scaling factor and the crossover rate. In
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Nomenclature

a;a1;a2 Diode ideality constant
D Problem dimension
FES Function evaluations
FESmax Maximum number of function evaluations
Gmax Maximum number of generations
Id; Id1; Id2 Diode current (mA)
IL Output current (A)
Iph Photo-generated current (A)
Isd Reverse saturation current (A)
Isd1 Diffusion current (A)
Isd2 Saturation current (A)
Ish shunt resistor current (A)

Abbreviations
ABC Artificial bee colony
BHCS Biogeography-based heterogeneous cuckoo search
BLPSO Biogeography-based learning PSO
CLPSO Comprehensive learning PSO
DDM Double diode mode
DE Differential evolution
ELPSO Enhanced leader PSO
FPA Flower pollination algorithm
FWA Fireworks algorithm
GOTLBO Generalized opposition TLBO
HFAPS Hybrid firefly algorithm and pattern search
HS Harmony search
IACE Individual absolute current error

IADE Improved adaptive differential evolution
IAPE Individual absolute power error
k Boltzmann constant (1:3806503� 1023 J=K)
NP Population size
Pbest Position of the best particle
Pi Position of the i-th particle
q Electron charge (1:60217646� 10�19 C)
RS Series resistance (U)
Rsh Shunt resistance (U)
T Cell temperature (K)
VL Cell output voltage (V)
Vt Junction thermal voltage (V)
mBP ;mP Gaussian parameters
gi Selection probability for the i-th particle
MDN Maximum diffusion number
MHA Meta-heuristic algorithms
pSFS Perturbed stochastic fractal search
P-DE Penalty based differential evolution
PSO Particle swarm optimization
PV Photovoltaic
RMSE Root mean square error
SD Standard deviation
SDM Single diode model
SFS Stochastic fractal search
SSA Salp swarm algorithm
TLBO Teaching-learning-based optimization
TLABC Teaching-learning-based artificial bee colony
TRR Trust-region reflective
WOA Whale optimization algorithm
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Ref. [12], the fitness information was used to tune the control pa-
rameters, and an improved adaptive DE (IADE) was proposed for
estimating parameters of PV models. PSO is also simple to imple-
ment and has fast convergence speed, but it often suffers from
premature convergence. To overcome this drawback, several PSO
variants including the enhanced leader PSO (ELPSO) [13], the
adaptive mutation strategy (MPSO) [14] and the chaotic heteroge-
neous comprehensive learning PSO (CHCLPSO) [15], have been
developed and applied to extract the PV model parameters. In
Ref. [16], three HS algorithmswere used to determine the unknown
parameters of solar cell models. The simulation studies show that
HS algorithms achieve improved results compared to the simulated
annealing and the pattern search. In Ref. [17], artificial bee colony
(ABC) was used to identify the parameters of two solar cells. It is
observed that ABC has good search ability for multimodal objective
Fig. 1. Equivalent electric circuit of single diode model.
functions compared with HS, PSO, genetic algorithm and bacterial
foraging algorithm. In Ref. [18], generalized oppositional TLBO
(GOTLBO) algorithm was proposed to identify the parameters of
solar cell models. By using the generalized opposition-based
learning, GOTLBO accelerates the convergence speed compared to
the basic TLBO.

There is not a single classic MHA that is competent for all
optimization problems. The latest MHAs are used for PV parameter
estimation. In Ref. [19], the whale optimization algorithm (WOA)
was proposed for PV parameters estimation, in which the chaotic
map was used to automatically adjust the internal parameters of
WOA. This helps to avoid local optimum and also improves the
convergence rate. In Ref. [20], two prey searching strategies were
embedded into WOA, which overcomes the problem of premature
convergence, and the improved WOA was applied to estimate the
model parameters of two practical PV power stations. Alam et al. [3]
proposed a flower pollination algorithm (FPA) based method for PV
Fig. 2. Equivalent electric circuit of double diode model.
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parameters estimation method to improve the convergence per-
formance. Improved JAYA algorithms were proposed to accurately
and reliably identify the parameters of several PV models [4,21].
However, JAYA algorithms need relatively large number of itera-
tions to converge. Several other latest MHAs including salp swarm
algorithm (SSA) [22] and fireworks algorithm (FWA) [23] were also
utilized to extract PV model parameters, and achieve competitive
performance in the reported case studies.

Hybrid MHAs combine advantages from more than one MHA,
thus provide more accurate parameters than the individual algo-
rithms. Several hybrid MHAs were also developed for PV parameter
estimation problems, including hybrid firefly algorithm and pattern
search (HFAPS) [24], teaching-learning-based artificial bee colony
(TLABC) [25], biogeography-based heterogeneous cuckoo search
(BHCS) [26], and trust-region reflective artificial bee colony (ABC-
TRR) [27].
1.2. Contribution

The above short literature review shows that parameter esti-
mation of PV models is still a challenging task that requires more
effective and efficient tools. Recent development suggests that
MHAs have good potential for parameter estimation of PV models.
In this work, wewill explore a particular MHA, the stochastic fractal
search (SFS), for PV modeling.

SFS is an MHA which uses the diffusion and update processes
based on random fractal properties [28]. This algorithm is devel-
oped to overcome the weaknesses of MHAs such as premature
convergence and low robustness. SFS has been applied in solving
several real-world problems, such as system reliability optimiza-
tion [29], PID controller design [30], and electric power economic
dispatch [31].

Inspired by the recent progress of SFS in applications, in this
study, we investigate the further development of SFS for the chal-
lenging PV parameter estimation problems. Specifically, we pro-
pose a perturbed stochastic fractal search (pSFS) algorithm, which
employs the diffusion and updating operators in searching. More-
over, a simple but efficient chaotic elitist perturbation is incorpo-
rated into the pSFS, which drives the local search around the best
solution during the searching process. This designed perturbation
can further improve the solution accuracy and robustness. The
proposed pSFS is applied to solve three PV parameter estimation
problems with different diode models, and the results are
compared with several recently-developed MHAs to verify its
performance.

The contributions of this paper are listed as follows:

(1) A new perturbed SFS (pSFS) approach is proposed for solving
PV parameter estimation problems.

(2) A chaotic elitist perturbation strategy is implemented to
improve the search efficiency.
IL ¼ Iph � Id1 � Id2 � Ish
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VL þ ILRS
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(3) pSFS is applied to three PV parameter estimation problems
with different diode models, as well as three PV modules
using survey data.

(4) By comparing with the recently-developed algorithms, the
superiority of pSFS in solution accuracy and robustness are
demonstrated.
1.3. Paper organization

The remaining of this paper is organized as follows. In Section 2,
three PV parameter estimation problems are defined for SDM, DDM
and PV module, respectively. The basic SFS and the proposed pSFS
algorithms are presented in Section 3. Comparisons are made in
Section 4 between the pSFS and several recently-developed algo-
rithms. In Section 5, the practical use of pSFS is examined by using
surveyed experimental data from three different PV modules.
Finally, conclusions are given in Section 6.

2. Problem statement

This section presents the mathematical formulation of PV
parameter estimation problems with three different diode models,
i.e., SDM, DDM, and PV module models.

2.1. Single diode model

The equivalent electric circuit of a SDM is shown in Fig. 1. In
SDM, the output current IL is calculated as follows [32,33]:

IL ¼ Iph � Id � Ish ¼ Iph � Isd ,
�
exp

�
VL þ RS,IL

a,Vt

�
�1

�
� VL þ RS,IL

Rsh
(1)

where Iph, Id and Ish are the photo-generated current, diode current
and shunt resistor current, respectively; VL is the cell output
voltage; Isd is the reverse saturation current; RS and Rsh are the
series resistance and shunt resistance, respectively; a is the diode
ideality constant; and Vt is the junction thermal voltage calculated
as follows:

Vt ¼ kT
q

(2)

where k ¼ 1:3806503� 1023 J=K is the Boltzmann constant,
q ¼ 1:60217646� 10�19 C is the electron charge, and T is the cell
temperature (K).

2.2. Double diode model

The equivalent electric circuit of the DDM is shown in Fig. 2. In
DDM, the cell output current IL can be calculated as follows [32,33]:
VL þ ILRs
Rsh

(3)



Fig. 3. Equivalent electric circuit of PV module model.
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where Id1 and Id2 denote the first and the second diode currents,
respectively; Isd1 and Isd2 denote the diffusion and saturation cur-
rents, respectively; a1 and a2 are the diffusion and recombination
diode ideality factors, respectively.

2.3. PV module model

The PV module model consists of Ns � Np solar cells connected
in series and/or in parallel as shown in Fig. 3. The cell output cur-
rent IL can be formulated as follows [32,33]:

IL ¼Np , Iph �Np , Isd ,
�
exp

�
VL

�
NS þ RS,IL

�
Np

a,Vt

�
�1

�

� Np,VL
�
NS þ RS,IL
Rsh

(4)

where Np and Ns are the numbers of solar cells in parallel and in
series, respectively.

2.4. Objective function of PV estimation problem

In order to extract the unknown parameters of PV models based
on the experimental data, the PV parameter estimation is converted
into an optimization problem. The objective function is defined as
the overall root mean square error (RMSE) between experimental
data and simulated data as follows [18,34]:

RMSEðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

fkðVL; IL; xÞ2
vuut (5)

where N is the number of experimental data, and x is the vector of
unknown model parameters.

For the SDM,

fkðVL; IL; xÞ¼ Iph � Isd

�
exp

�
VL þ ILRS

aVt

�
�1

�
�VL þ ILRs

Rsh
� IL

(6)

x¼
n
Iph; Isd;RS;Rsh; a

o
(7)

For the DDM,
fkðVL; IL; xÞ¼ Iph � Isd1

�
exp

�
VL þ ILRS
a1Vt

�
�1

�
� Isd2

�
exp

�
VL þ ILRS
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�
�1

�
�VL þ ILRs

Rsh
� IL (8)
x¼
n
Iph; Isd1; Isd2;RS;Rsh; a1; a2

o
(9)

For the PV module model,
fkðVL; IL; xÞ¼NpIph �NpIsd

�
exp

�
VL

�
NS þ RSIL

�
Np

aVt

�
�1

�
�NpVL

�
NS þ
Rsh
x¼
n
Iph; Isd;RS;Rsh; a

o
(11)

3. Perturbed stochastic fractal search for PV model
estimation

3.1. Stochastic fractal search

SFS is a recently developed MHA proposed by Salimi [28], taking
inspiration from the natural growth phenomenon of random
fractal. The SFS algorithm mainly uses two processes namely
diffusion and updating to improve the searching. In the diffusion
process, each particle (i.e., candidate solution) diffuses around its
own location, and carries out the exploitation task. By contrast, in
the updating process, each particle is updated according to the
location of other particles, and this process leads to exploration
properties. The two processes of SFS are shown in Fig. 4.

The diffusion process uses Gaussian random walks to generate
points around each particle until a predetermined maximum
diffusion number (MDN) is reached. There are two types of
Gaussian walks in the diffusion process, which are described as
follows:

GW1 ¼GaussianðmBP ; dÞ þ ðrandð0;1Þ� Pbest � randð0;1Þ� PiÞ
(12)
GW2 ¼GaussianðmP ; dÞ (13)

where Pi and Pbest are the positions of the i-th and the best particles,
respectively; i ¼ 1;2;/;NP,NP is the population size; randð0;1Þ is a
random number generated within [0,1]. Gaussian parameters mBP
and mP are equal to Pbest and Pi, respectively. The standard deviation
RSIL � IL (10)
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d is dynamically adjusted based on the number of the generation G:

d¼
����logðGÞG

�ðPi � PbestÞ
���� (14)

The update process employs two statistical procedures to un-
dertake the exploration in SFS. In the first updating process, each
particle position is updated as follows:

P0iðjÞ¼
	
Pr1ðjÞ � randð0;1Þ � ðPr2ðjÞ � PiðjÞÞifgi < randð0;1Þ

PiðjÞotherwise

(15)

where j2f1;2;/;Dg is the index for each optimization variable; D
is the number of optimization variables; P0i is the new position of Pi;
Pr1 and Pr2 are the positions of two randomly selected particles; gi
is the selection probability for particle Pi that can be calculated as:

gi ¼1� rankðPiÞ
NP

(16)

where rankðPiÞ is the fitness order from the best to the worst of the
i-th particles in the population. Obviously, the worse particle has a
smaller gi undergoing the first update process.

In the second updating process, the probability gi is recalculated
and used to determine whether a particle Pi should be updated as
follows:

P0iðjÞ¼
	
PiðjÞ � randð0;1Þ � ðP0r1ðjÞ � PbestðjÞÞifrandð0;1Þ<0:5

PiðjÞ þ randð0;1Þ � ðP0r1ðjÞ � P0r2ðjÞÞotherwise

(17)

where P0r1 and P0r2 are the positions of two randomly selected
particles.
3.2. Perturbed stochastic fractal search

3.2.1. Chaotic elitist perturbation strategy
During the search process of SFS, the best solution found is

recorded in each generation. Its quality affects both the search
process and the final solution. Chaotic elitist perturbation strategy
is introduced to perform adaptive local search around the best
solution as follows:

P�ðjÞ¼
	
PbestðjÞþrandð0;1Þ,ð2zk�1Þifrandð0;1Þ<1�FES=FESmax

PbestðjÞotherwise

(18)

where the logistic map zk ¼ 4zk�1ð1�zk�1Þ is used to generate the
k-th chaotic iteration value, with its initial value z0 randomly
generated within [0, 1]; FES and FESmax are the current and
Fig. 4. The main procedu
maximum number of function evaluations. The new solution P� is
compared with the worst solution Pworst in current population, and
the better one is selected for the next generation.

According to Eq. (18), the chaotic elitist perturbation strategy
can perform a self-adaptive perturbation during the optimization
process. To be specific, the value of FES is relative small in the early
search stage, thus more perturbations will be added to the best
solution, which is useful for global exploration. By contrast, the
value of FES is close to 1 in the latter search stage, therefore more
information will be inherited from the best solution, which is
beneficial for local exploitation.

3.2.2. Algorithmic framework
The flowchart of the proposed pSFS algorithm is presented in

Fig. 5. A more detailed description of pSFS using the pseudocode is
presented in Algorithm 1 in Appendix 1. It can be seen that, the
proposed pSFS takes four searching stages, including the diffusion
process, the first and second updating processes, and the chaotic
elitist perturbation. These four stages have different roles in the
searching process. The diffusion process focuses on local exploita-
tion, the two updating processes focus on global exploration, and
the chaotic elitist perturbation strategy performs adaptive local
search to further improve the solution accuracy and robustness.

The computational complexity of pSFS mainly includes: (a) the
time for the diffusion process Tdi, (b) the time for the first updating
process Tup1, (c) the time for the second updating process Tup2, and
(d) the time for the chaotic elitist perturbation strategy Tpe. The
total computational complexity of pSFS can be represented by a
time metric as follows:

TpSFS ¼


Tdi þ Tup1 þ Tup2 þ Tpe

�
,Gmax

¼ ðOðNP,MDN,DÞ þ OðNP,logðNPÞ þ NP,DÞ
þOðNP,logðNPÞ þ NP,DÞ þ OðDÞÞ

¼ OðMDN,Dþ 2logðNPÞ þ 2DÞ,NP,Gmax
¼ OðMDN,Dþ 2logðNPÞ þ 2DÞ,FESmax

(19)

where D is the problem dimension, NP is the population size, MDN
is themaximumdiffusion number, Gmax is themaximumnumber of
generations, and FESmax is the maximum number of function
evaluations.

4. Results and analysis

The proposed pSFS algorithm is evaluated by solving three PV
parameter estimation problems as described in Section 2. The
experimental current-voltage data of the SDM and DDM are
measured from a RTC France solar cell (under 1000W=m2 at 33 �C)
and are taken from Ref. [6]. The experimental current-voltage data
of the PV module are from Photowatt-PWP201 module (under
1000W=m2 at 45 �C) [6]. The searching ranges for the model pa-
rameters are listed in Table 1, which are the same as those in
re of SFS algorithm.



Fig. 5. Flowchart of the pSFS algorithm.
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Table 1
Parameter boundaries of three PV models.

Parameter SDM/DDM PV module

Lower Upper Lower Upper

IphðAÞ 0 1 0 2
Isd; Isd1; Isd2ðmAÞ 0 1 0 50
RSðUÞ 0 0.5 0 2
RshðUÞ 0 100 0 2000
a;a1;a2 1 2 1 50

Table 2
Parameter settings for pSFS and the other algorithms.

Algorithm Year Parameter settings

CLPSO 2006 NP ¼ 40, w ¼ 0:9 � 0:2, c ¼ 1:496, m ¼ 5
BLPSO 2017 NP ¼ 40;w ¼ 0:9 � 0:2;c ¼ 1:496; I ¼ E ¼ 1
ABC 2007 NP ¼ 50; limit ¼ 200
GOTLBO 2016 NP ¼ 50, Jr ¼ 0:3
TLABC 2018 NP ¼ 50; limit ¼ 200, F ¼ randð0; 1Þ
IJAYA 2017 NP ¼ 20
SFS 2015 NP ¼ 30;MDN ¼ 1, Gaussian walk GW1
pSFS proposed NP ¼ 30;MDN ¼ 1, Gaussian walk GW1
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Refs. [4,35,36]. This will ensure comparisons are made under the
same system settings.

The pSFS is compared with seven recently-developed algo-
rithms: basic SFS [28], CLPSO (comprehensive learning PSO) [37],
BLPSO (biogeography-based learning PSO) [38], ABC (artificial bee
colony) [39], GOTLBO (generalized oppositional TLBO) [18], TLABC
(teaching-learning-based ABC) [25], and IJAYA (improved JAYA)
[33]. These algorithms show good performance for PV parameter
estimation, therefore chosen for comparison in this study.

The parameter settings for these algorithms under comparison
are given in Table 2, mainly taken from their corresponding liter-
ature. The tuning parameters for the proposed pSFS are also given
in Table 2. The maximum number of function evaluations is set to
be FESmax ¼ 50000 for all three PV parameter estimation problems
[4,25,36]. All the algorithms are coded in MATLAB and run 30 times
independently to obtain the statistical results. The experiments are
carried out on a DELL computer with a Core i5-4460 processor and
8G RAM.
4.1. Comparisons based on the best results

4.1.1. Results on the single diode mode
We first compare the proposed pSFS with the other seven al-

gorithms on the SDM. There are five unknown parameters to be
estimated in the SDM model. Table 3 presents the comparison re-
sults for all these algorithms. The extracted model parameters are
also presented. Note that, the results reported in Table 3 are the best
RMSE values among 30 independent runs. The statistical results
Table 3
Results of pSFS and the compared algorithms on the single diode model.

Algorithm Iph (A) IsdðmAÞ RshðUÞ
CLPSO 0.76064 0.33454 56.03420
BLPSO 0.76063 0.42518 62.58528
ABC 0.76085 0.33016 53.59884
GOTLBO 0.76077 0.32256 53.33877
TLABC 0.76078 0.32302 53.71636
IJAYA 0.76078 0.32304 53.71441
SFS 0.76078 0.32302 53.71852
pSFS 0.76078 0.32302 53.71852

The best results are highlighted in bold font.
will be compared in Section 4.2.
From the results in Table 3, the proposed pSFS, together with SFS

and TLABC achieve the best RMSE value (i.e., 9.8602E-4). The RMSE
reflects the estimation accuracy of the algorithms. Thus, the highest
estimation accuracy has been achieved by pSFS, SFS and TLABC.
IJAVA achieves the RMSE value of 9.8603E-04, followed by GOTLBO
(9.8658E-04) and ABC (9.8815E-04). The performance of CLPSO and
BLPSO stays on the lower end of the comparison, and their RMSE
values are 9.9207E-04 and 1.1239E-03, respectively.

The extracted parameters of pSFS are used to plot the IeV and
PeV curves. As shown in Fig. 6, both IeV and PeV characteristics
curves demonstrate that the estimated model curves are highly
consistent with the experimental data. Besides, Fig. 7 plots the in-
dividual absolute current error (IACE) and individual absolute po-
wer error (IAPE) over the whole voltage range. The maximal IACE
value is smaller than 2.5E-3, and the maximal IAPE value is smaller
than 1.5E-3. All these observations demonstrate the high estima-
tion accuracy of the pSFS algorithm.
4.1.2. Results on the double diode mode
The comparison results of pSFS with the other seven algorithms

for the DDM are presented in Table 4. Since there are seven un-
known parameters for a DDM model, the estimation of the DDM is
more complicated than that of the SDM.

From Table 4, it can be found that the proposed pSFS and the
basic SFS attain the best RMSE value (i.e., 9.8255E-04). This in-
dicates the higher accuracy of SFS algorithms over those non-SFS
algorithms for PV parameter estimation. TLABC achieves the third
best RMSE value (i.e., 9.8414E-04), and IJAVA obtains the fourth best
RMSE value (i.e., 9.8423E-04). CLPSO and BLPSO exihit relative poor
performance for this case, and their RMSE values are the worst
among the eight algorithms.

To further evaluate the pSFS’s estimation accuracy over the
whole voltage range, Fig. 8 plots the IeV and PeV characteristic
curves. The estimated model curves of pSFS are in good agreement
with the experimental data. Meanwhile, from Fig. 9, the maximal
IACE value is less than 2.6E-3, and the maximal IAPE value is less
than 1.5E-3. These results show that the proposed pSFS also ach-
ieves a very high estimation accuracy for the DDM.
4.1.3. Results on the PV module mode
A PVmodule model that has five estimation parameters is taken

to further evaluate the estimation accuracy of the proposed pSFS.
Table 5 presents the comparison results of pSFS and the other al-
gorithms. From the results in Table 5, three algorithms (i.e., pSFS,
SFS and TLABC) achieve the best RMSE value (i.e., 2.42507E-03),
followed by IJAVA (2.42512E-03), GOTLBO(2.42513E-03), BLPSO
(2.42520E-03), CLPSO (2.42661E-03) and ABC (2.44692E-03).

The optimal model parameters extracted by pSFS are used to
construct the IeV and PeV curves. As shown in Fig. 10, high con-
sistency can be observed between the estimated model curves and
RSðUÞ a RMSE Rank

0.03623 1.48469 9.9207E-04 7
0.03523 1.50940 1.1239E-03 8
0.03629 1.48339 9.8815E-04 6
0.03637 1.48106 9.8658E-04 5
0.03638 1.48118 9.8602E-04 1
0.03638 1.48119 9.8603E-04 4
0.03638 1.48118 9.8602E-04 1
0.03638 1.48118 9.8602E-04 1



Fig. 6. Comparisons between experimental data and the data estimated from pSFS for the single diode model: (a) IeV characteristics, (b) PeV characteristics.

Fig. 7. Individual absolute errors for current and power using pSFS (single diode
model).
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the experimental data for both IeV and PeV characteristics. From
Fig. 11, it can be observed that the maximal IACE value is less than
8.0E-2, and the maximal IAPE value is less than 5.0E-3. All these
comparisons demonstrate the high estimation accuracy of the
proposed pSFS for the PV module model.

4.2. Comparisons based on the statistical results

Since all the eight PV parameter estimation algorithms are
stochastic approaches, it is helpful to compare their statistical re-
sults. Table 6 presents the best, the mean, the worst and the
Table 4
Results of pSFS and the compared algorithms on the double diode model.

Algorithm Iph (A) Isd1ðmAÞ Isd2ðmAÞ RshðUÞ
CLPSO 0.76112 0.00237 0.33875 52.40069
BLPSO 0.76056 0.17895 0.31560 64.79937
ABC 0.76071 0.14623 0.24605 55.36509
GOTLBO 0.76081 0.27173 0.25952 53.61867
TLABC 0.76081 0.42394 0.24011 54.66797
IJAYA 0.76079 0.49461 0.22069 54.65515
SFS 0.76078 0.65647 0.23721 55.30604
pSFS 0.76078 0.84161 0.21545 55.72835

The best results are highlighted in bold font.
standard deviation (SD) of RMSE of the eight algorithms over 30
independent runs. Again three PV models are considered in the
comparison. In addition, the Wilcoxon rank sum test is conducted
to compare pSFS with the other algorithms, so as to establish a
statistical view. The symbols “þ” and “ ¼ ” indicate that pSFS per-
forms significantly better or similar to others, with a significance
level of p ¼ 0:05. The average computational times are also given in
Table 6.

From Table 6, it can be found that:

� In terms of the best RMSE value, two SFS algorithms, i.e., pSFS
and SFS, achieve the best results for all three PV models. TLABC
achieves the best results for the SDM and PV module models.
The other five algorithms, including CLPSO, BLPSO, ABC, GOTLBO
and IJAVA, cannot obtain the best RMSE value on any PVmodels.

� Considering the mean and worst RMSE values, the proposed
pSFS achieves the best results on two PV models, i.e., SDM and
PVmodule. SFS gets the best result on the PVmodule model, but
it performs worse than pSFS on SDM and DDM. This indicates
that the chaotic elitist perturbation strategy improves the esti-
mation accuracy of SFS. IJAVA is another competitive algorithm,
as it attains the best result on DDM.

� The SD of RMSE can reflect the robustness of an algorithm in
different runs. For this performance index, the proposed pSFS
achieves the best results on the SDM and the PVmodulemodels.
IJAVA gets the best SD result on DDM. It can also be observed
that, pSFS achieves smaller SD values than SFS on all three PV
models, which means the robustness of pSFS is enhanced by
using the chaotic elitist perturbation strategy.

� According to the Wilcoxon rank sum test, the proposed pSFS
performs significantly better than CLPSO, BLPSO, ABC, GOTLBO
and TLABC on all three PV models. Compared with IJAVA and
RSðUÞ a1 a2 RMSE Rank

0.03619 1.68481 1.48612 1.0135E-03 7
0.03553 1.69574 1.48789 1.1042E-03 8
0.03654 1.68023 1.46226 9.8956E-04 6
0.03655 1.46681 1.91606 9.8544E-04 5
0.03667 1.90750 1.45671 9.8414E-04 3
0.03671 1.88559 1.45021 9.8423E-04 4
0.03669 1.99990 1.45509 9.8255E-04 1
0.03679 2.00000 1.44705 9.8255E-04 1



Fig. 8. Comparisons between experimental data and the data estimated from pSFS for the double diode model: (a) IeV characteristics, (b) PeV characteristics.

Fig. 9. Individual absolute errors for current and power using pSFS (double diode
model).
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SFS, pSFS exhibits significantly better performance on the SDM
and PV module.

� In terms of computational time, the eight algorithms use about
20 s for all three different PV models. Therefore, there are no
clear differences among these algorithms.

Table 7 presents the Friedman rank values of the eight algo-
rithms on the three problems PV parameter estimation problems.
The proposed pSFS attains the best rank value (1.50), SFS the second
(2.17), followed by IJAVA (2.67), TLABC(4.33), CLPSO(5.67),
GOTLBO(6.33), ABC(6.33) and BLPSO(7.00).
Table 5
Results of pSFS and the compared algorithms on the PV module model.

Algorithm Iph (A) IsdðmAÞ RshðUÞ
CLPSO 1.03036 3.45208 1001.18353
BLPSO 1.03052 3.50258 983.15030
ABC 1.03008 3.30190 968.65121
GOTLBO 1.03046 3.49907 989.68885
TLABC 1.03052 3.48226 981.84265
IJAYA 1.03054 3.47922 981.13257
SFS 1.03051 3.48226 981.98237
pSFS 1.03051 3.48226 981.98223

The best results are highlighted in bold font.
Based on the above statistical comparisons and analysis, it can
be concluded that the proposed pSFS achieves the overall best
parameter estimation accuracy and robustness among the eight
algorithms. The chaotic elitist perturbation strategy enhances the
performance of the pSFS algorithm. Therefore, pSFS can be used as
an accurate and robust method for PV parameter estimation
problems with different diode models.

4.3. Comparisons of the convergence

We also compare the convergence of the eight algorithms for
the three PV models. Fig. 12 plots the convergence curves in terms
of average RMSE. From Fig. 12, it can be observed that:

� IJAVA has the fastest convergence speed, followed by pSFS, SFS,
TLABC and GOTLBO.

� The proposed pSFS has reasonably fast convergence speed.
Meanwhile, it achieves high final estimation accuracy for all
three PV models.

� pSFS converges faster than SFS for all three PV models. This
indicates the chaotic elitist perturbation strategy accelerates its
convergence speed.

� GOTLBO and TLABC have the similar convergence speed as that
of pSFS, but their final estimation accuracy is worse than pSFS.

� The other three algorithms, BLPSO, CLPSO and ABC, converge
relative slow. Also, their estimation accuracy are lower in com-
parison with other algorithms.

Based on the above comparisions, it can be concluded that the
proposed pSFS has a reasonably fast convergence speed, and its
final convergence accuracy is the highest compared with all the
other algorithms. In fact, an efficient seach process should balance
RSðUÞ a RMSE Rank

1.20269 48.60837 2.42661E-03 7
1.20062 48.66526 2.42520E-03 6
1.20631 48.44085 2.44692E-03 8
1.20080 48.66113 2.42513E-03 5
1.20127 48.64284 2.42507E-03 1
1.20145 48.63942 2.42512E-03 4
1.20127 48.64283 2.42507E-03 1
1.20127 48.64283 2.42507E-03 1



Fig. 10. Comparisons between experimental data and the data estimated from pSFS for the PV module model: (a) IeV characteristics, (b) PeV characteristics.

Fig. 11. Individual absolute errors for current and power using pSFS (PV module
model).

Table 6
Statistical results of pSFS and the compared algorithms for different PV models.

Algorithm RMSE

Best Mean

SDM CLPSO 9.9207E-04 1.0587E-03
BLPSO 1.1239E-03 1.4091E-03
ABC 9.8815E-04 1.1213E-03
GOTLBO 9.8658E-04 1.0774E-03
TLABC 9.8602E-04 9.9852E-04
IJAYA 9.8603E-04 9.8879E-04
SFS 9.8602E-04 9.8610E-04
pSFS 9.8602E-04 9.8602E-04

DDM CLPSO 1.0135E-03 1.0911E-03
BLPSO 1.1042E-03 1.5854E-03
ABC 9.8956E-04 1.0576E-03
GOTLBO 9.8544E-04 1.1663E-03
TLABC 9.8414E-04 1.1555E-03
IJAYA 9.8423E-04 1.0079E-03
SFS 9.8255E-04 1.0566E-03
pSFS 9.8255E-04 1.0122E-03

PV module CLPSO 2.42661E-03 2.46260E-03
BLPSO 2.42520E-03 2.43356E-03
ABC 2.44692E-03 2.50414E-03
GOTLBO 2.42513E-03 2.44733E-03
TLABC 2.42507E-03 2.42647E-03
IJAYA 2.42512E-03 2.43335E-03
SFS 2.42507E-03 2.42507E-03
pSFS 2.42507E-03 2.42507E-03

The best results are highlighted in bold font.

Table 7
Friedman rank values of theses algorithms on all three problems.

Friedman rank Final rank

CLPSO 5.67 5
BLPSO 7.00 8
ABC 6.33 6
GOTLBO 6.33 7
TLABC 4.33 4
IJAYA 2.67 3
SFS 2.17 2
pSFS 1.50 1
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the exploration and exploitation. In other words, too fast converge
speed may make algorithms premature, while too solw converge
speed may affect the final solution accuracy. For the multimodal PV
parameter estimation problem, the proposed pSFS can keep an
effective balance between global exploration and local exploitation.
This is probably why pSFS can achieve high final estimation
Worst SD Sig. Time(s)

1.1872E-03 5.0109E-05 þ 20.35
1.7077E-03 1.6161E-04 þ 22.40
1.4174E-03 1.1982E-04 þ 24.43
1.3536E-03 9.5825E-05 þ 20.11
1.0397E-03 1.8602E-05 þ 19.42
9.9809E-04 2.8508E-06 þ 24.52
9.8819E-04 3.9677E-07 þ 22.86
9.8608E-04 1.1063E-08 23.05
1.1991E-03 5.6863E-05 þ 20.96
2.1955E-03 2.6619E-04 þ 23.29
1.2848E-03 6.1867E-05 þ 24.85
1.5962E-03 1.5617E-04 þ 21.58
1.5048E-03 1.5503E-04 þ 19.88
1.1357E-03 4.0417E-05 ¼ 25.03
1.4994E-03 1.3042E-04 ¼ 23.37
1.1930E-03 4.6733E-05 23.44
2.54232E-03 2.83008E-05 þ 20.66
2.47888E-03 1.10969E-05 þ 22.85
2.58639E-03 3.85744E-05 þ 24.24
2.55767E-03 3.14372E-05 þ 20.68
2.44584E-03 3.99568E-06 þ 19.21
2.58850E-03 2.97702E-05 þ 24.47
2.42507E-03 7.05992E-13 þ 22.80
2.42507E-03 6.62209E-17 22.97



Fig. 12. Convergence graphs of different algorithms for three PV models (a) SDM (b) DDM (c) PV module.

Table 8
Comparison of the pSFS algorithm with different population size for three PV models.

RMSE

Min Mean Max SD

SDM pSFS-N10 9.8851E-04 1.6630E-03 3.6544E-03 6.1567E-04
pSFS-N20 9.8602E-04 1.0072E-03 1.0854E-03 3.2138E-05
pSFS-N30 9.8602E-04 9.8602E-04 9.8608E-04 1.1063E-08
pSFS-N40 9.8602E-04 9.8603E-04 9.8628E-04 4.7319E-08
pSFS-N50 9.8602E-04 9.8666E-04 9.9449E-04 1.6666E-06

DDM pSFS-N10 9.8774E-04 1.8195E-03 5.5085E-03 1.0045E-03
pSFS-N20 9.8248E-04 1.0946E-03 2.2346E-03 2.3917E-04
pSFS-N30 9.8255E-04 1.0122E-03 1.1930E-03 4.6733E-05
pSFS-N40 9.8268E-04 1.0118E-03 1.3399E-03 7.5648E-05
pSFS-N50 9.8291E-04 1.0411E-03 1.4825E-03 1.0548E-04

PV module pSFS-N10 2.42570E-03 1.22912E-02 2.74251E-01 4.94925E-02
pSFS-N20 2.42507E-03 2.46508E-03 3.17858E-03 1.51147E-04
pSFS-N30 2.42507E-03 2.42507E-03 2.42507E-03 6.62209E-17
pSFS-N40 2.42507E-03 2.42507E-03 2.42508E-03 2.53130E-10
pSFS-N50 2.42507E-03 2.42507E-03 2.42508E-03 3.13602E-10
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accuracy for all three PV models.
4.4. Parameter analysis

To implement an efficient algorithm, it is also very important to
analyze the tuning parameters. We analyze the impacts of the
population size and the two Gaussian random walks on the per-
formance of the proposed pSFS algorithm.
4.4.1. Population size
Table 8 shows the results of the proposed pSFS algorithm with

population size NP ¼ 10, 20, 30, 40 and 50 for three PV estimation
problems. From the results listed in Table 8, it can be observed that:

� For the SDM, pSFS-NP30 yields the best performance for all four
statistical results. Although pSFS-NP20, pSFS-NP40, and pSFS-
NP50 also provides the best results in terms of best RMSE,



Table 9
Comparison of the pSFS algorithm with two kinds of Gaussian walks.

RMSE

Best Mean Worst SD

SDM pSFS-GW1 9.8602E-04 9.8602E-04 9.8608E-04 1.1063E-08
pSFS-GW2 9.8602E-04 9.8608E-04 9.8782E-04 3.2842E-07

DDM pSFS-GW1 9.8255E-04 1.0122E-03 1.1930E-03 4.6733E-05
pSFS-GW2 9.8249E-04 1.0113E-03 1.4070E-03 8.3206E-05

PV module pSFS-GW1 2.42507E-03 2.42507E-03 2.42507E-03 6.62209E-17
pSFS-GW2 2.42507E-03 2.42507E-03 2.42507E-03 4.98125E-17

Table 10
Model parameters estimated by the pSFS algorithm for three PV modules at different irradiance and temperature of 25 �C.

Parameters Thin-film ST40 Mono-crystalline SM55 Multi-crystalline KC200GT

G ¼ 1000W=m2

Iph (A) 2.67580 3.45010 8.21688
IsdðmAÞ 1.52880 0.17115 0.00225
RSðUÞ 1.11323 0.32915 0.34376
RshðUÞ 357.59844 483.90046 763.51258
a 1.50028 1.39575 1.07653
RMSE 7.34099E-04 1.14621E-03 1.53933E-03
G ¼ 800W=m2

Iph (A) 2.13801 2.76038 6.57104
IsdðmAÞ 1.15810 0.14395 0.00098
RSðUÞ 1.12529 0.33759 0.35678
RshðUÞ 332.88893 459.87849 754.80161
a 1.47315 1.38114 1.03680
RMSE 7.73905E-04 6.68579E-04 1.64367E-03
G ¼ 600W=m2

Iph (A) 1.60481 2.07090 4.93431
IsdðmAÞ 1.44187 0.15551 0.00386
RSðUÞ 1.11261 0.33050 0.33734
RshðUÞ 347.69469 450.06853 743.00159
a 1.49582 1.38753 1.10402
RMSE 6.74036E-04 8.23949E-04 1.29767E-03
G ¼ 400W=m2

Iph (A) 1.06754 1.38284 3.28785
IsdðmAÞ 1.84875 0.10042 0.00149
RSðUÞ 1.08058 0.39665 0.35358
RshðUÞ 362.51450 427.05044 752.08941
a 1.52445 1.35199 1.05504
RMSE 6.30725E-04 7.07608E-04 1.42620E-03
G ¼ 200W=m2

Iph (A) 0.53314 0.69151 1.64615
IsdðmAÞ 1.42968 0.14641 0.00052
RSðUÞ 1.18572 0.28662 0.38111
RshðUÞ 344.98324 448.21071 690.14660
a 1.49752 1.38066 1.00324
RMSE 4.77201E-04 3.20688E-04 1.41847E-03

Table 11
Model parameters estimated by pSFS for three PV modules at different temperature and irradiance of 1000 W=m2.

Temperature Iph (A) IsdðmAÞ RSðUÞ RshðUÞ a RMSE

Thin-film ST40 25 �C 2.67580 1.52880 1.11323 357.59844 1.50028 7.34099E-04
40 �C 2.68091 5.66610 1.12930 364.10973 1.47648 1.32141E-03
55 �C 2.69197 18.68073 1.14959 295.02177 1.44978 1.82326E-03
70 �C 2.69233 87.52185 1.12589 367.75322 1.54824 7.77718E-04

Mono-crystalline SM55 25 �C 3.45010 0.17115 0.32915 483.90046 1.39575 1.14621E-03
40 �C 3.46914 1.14511 0.31310 533.06920 1.41784 3.78881E-03
60 �C 3.49461 6.90950 0.31871 484.88387 1.40514 3.78039E-03

Multi-crystalline KC200GT 25 �C 8.21688 0.00225 0.34376 763.51258 1.07653 1.53933E-03
50 �C 8.29531 0.12595 0.33565 953.88989 1.11729 2.74651E-03
75 �C 8.37766 1.63082 0.34250 790.55822 1.10148 4.47293E-03
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their results are not as good as pSFS-NP30 when comparing
other performance indices.

� For the DDM, pSFS-NP30 obtains the best results in terms of
worst and SD of RMSE.
� For the PV module model, pSFS-NP30 yields the best perfor-
mance in terms of best, mean, worst and SD of RMSE. Mean-
while, pSFS-NP30 is the only algorithm which gets the minimal
SD value.



Fig. 13. Comparisons between the experimental data and estimated data obtained by pSFS for three PV models at different irradiance, using real data from: (a) Thin-film ST40; (b)
Mon-crystalline SM55; (c) Multi-crystalline KC200GT.
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These results indicate that pSFS with amoderate population size
(i.e., pSFS-NP30) has the overall highest estimation accuracy and
robustness. In fact, when the population size is too small, the
population diversity is poor, which affects the global exploration
and estimation accuracy. On the contrary, when the population size
is too large, the algorithm needs more computational overheads
(i.e., number of function evaluations) to converge. When the
maximum number of function evaluations is fixed, too large pop-
ulation size may deteriorate the final performance. For the PV
estimation problems, a moderate population size NP ¼ 30 is rec-
ommended for pSFS.

4.4.2. Gaussian random walks
Table 9 shows the results of the pSFS with two different

Gaussian walks (GW). From Table 9, it can be found that:

� For the SDM, both pSFS-GW1 and pSFS-GW2 achieve the best
results for the best RMSE. However, pSFS-GW1 yields better
performance than pSFS-GW2 when considering the mean,
worst and SD of RMSE.

� For the DDM, pSFS-GW2 achieves the better results for the best
RMSE. pSFS-GW1 yields better performance than pSFS-GW2
when considering the mean, worst and SD of RMSE.

� For the PV module model, both pSFS-GW1 and pSFS-GW2 get
the best results in terms of best, mean and worst RMSE. pSFS-
GW2 obtains a smaller SD value than pSFS-GW1.
Our results indicate that there is no significant difference be-
tween pSFS-GW1 and pSFS-GW2 for the PV estimation problems.
According to reports [28], pSFS-GW1 has a faster convergence
speed and is more suitable for solving simple problems. pSFS-GW2
is more suitable for complicated problems, which needs more
iteration number to converge. From the case study results in this
work, pSFS-GW1 is recommended for the PV estimation problems.
5. Validation of pSFS with survey experimental data

The above comparison studies demonstrate that pSFS has the
highest estimation accuracy and robustness for parameter esti-
mation for PV models. In this section, the practical use of pSFS is
further examined by using experimental data from three different
PV modules in the manufacturer data sheet: Thin-film ST40, Mono-
crystalline SM55 and Multi-crystalline KC200GT [14].

The experimental IeV data are extracted directly from the data
sheet of five different irradiation levels at different temperature
levels. The searching ranges for the five unknown parameters are:
Iph2½0;2Isc� (A), Isd2½0;100�ðmAÞ, Rs2½0;2�ðUÞ, Rsh2½0;5000�ðUÞ
and a2½1;4�. The short circuit current Isc at non-standard condition
is calculated by Eq. (17):



Fig. 14. Comparisons between the experimental data and estimated data obtained by pSFS for three PV models at different temperatures, using real data from: (a) Thin-film ST40;
(b) Mon-crystalline SM55; (c) Multi-crystalline KC200GT.
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IscðG; TÞ¼ Isc STC
G

GSTC
þ aðT � TSTCÞ (20)

where G and T are the irradiation and the temperature levels,
respectively; GSTC ¼ 1000W=m2 and TSTC ¼ 25 �C ; Isc STC is short
circuit current at standard test condition.

Tables 10 and 11 present the optimal model parameters
extracted by the proposed pSFS algorithm for three PV models
under different irradiation and temperature levels, respectively.
Furthermore, to verify the accuracy of the model parameters, the
IeV characteristics of the three different PV modules under
different irradiation and temperature levels are plotted in Figs. 13
and 14, respectively.

From the results in Tables 10 and 11 the optimal model pa-
rameters extracted by the proposed pSFS are in close with those by
MPSO [14], and low RMSE values are achieved at different irradi-
ation and temperature levels. From Figs. 13 and 14, the model
curves calculated from the extracted model parameters match well
with the experimental data under various environment conditions,
i.e., at different irradiance and temperature levels. These observa-
tions indicate that the proposed pSFS approach can accurately
extract the model parameters when the PV systems are under
certain mismatch conditions such as partial shading.
6. Conclusion

In this work, we have proposed a perturbed stochastic fractal
search (pSFS) algorithm to accurately and robustly extract the PV
model parameters. The proposed pSFS algorithm employs diffusion
and updating processes inspired from random fractal properties.
Meanwhile, a chaotic elitist perturbation strategy is also employed
to perform self-adaptive local search around the best solution in
each generation. The proposed pSFS algorithm is evaluated on PV
parameter estimation problems with different diode models. Also,
the performance of pSFS is compared with the basic SFS and six
non-SFS algorithms. The following conclusions can be drawn from
the numerical results.

� pSFS achieves high parameter estimation accuracy for different
PV models. The statistical results demonstrate that pSFS has the
best results in terms of the optimal, the mean and the worst
RMSE values. Moreover, for the SDM and DDM, the absolute
current error of pSFS is smaller than 0.3%. For the PVmodule, the
absolute current error of pSFS is smaller than 8%.

� pSFS also has superiority in robustness compared with the
recently developed algorithms including SFS, IJAVA, TLABC and
GOTLBO. For the SDM, pSFS achieves the smallest SD value, the
value of which is smaller than 1e-7. For the PV module, pSFS
achieves the smallest SD value less than 1e-16.
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� pSFS performs better than the other compared algorithms under
comparison according to the Wilcoxon rank sum test.

� pSFS has a reasonably fast convergence speed, and keeps a good
balance between global exploration and local exploitation dur-
ing the searching process by employing two search operators.

� pSFS is robust to various environment conditions. The tests on
three real PV modules at different irradiance and temperature
levels show that pSFS achieves accurate results under all
Algorithm 1
Perturbed stochastic fractal search algorithm.

1: Initialize the population Piði ¼ 1;2;/;NPÞ
2: Evaluate the fitness of all the particles;
3: while the terminal condition is not met do
4: %% Diffusion process %%
5: for Each particle Pi do
6: for k¼ 1 to MDN do
7: Generate a new point GPk using the Gaussian walk;
8: Evaluate the fitness of GPk;
9: end forv
10: Select the best point GPbest from fGP1;GP2;/;GPkg;
11: if GPbest is better than Pi then
12: Pi ¼ GPbest
13: end if
14: end for
15: %% First updating process %%
16: Rank all particles from best to worst;
17: for Each particle Pi do
18: Generate a new point P0i using Eq. (12);
19: if P0i is better than Pi then
20: Pi ¼ P0i ;
21: end if
22: end for
23: %% Second updating process %%
24: for Each particle Pi do
25: if gi 	 randð0;1Þ then
26: Generate a new point P0i using Eq. (14);
27: if P0i is better than Pi then
28: Pi ¼ P0i ;
29: end if
30: end if
31: end for
32: %% Chaotic elitist perturbation %%
33: Get the best particle Pbest ;
34: Generate a new point P� using Eq. (15);
35: if P� is better than the worst particle Pworst then
36: Pworst ¼ P�;
37: end if
38: end while
circumstances.

The proposed pSFS gains the above benefits mainly from two
aspects. The first is the diffusion and updating processes from the
basic SFS, which helps to achieve balance between global and local
search. The second is the chaotic elitist perturbation strategy,
which further enhances the estimation accuracy and robustness. In
the future, we are interested in applying the pSFS algorithm to
modeling of more complicated PV systems such as integral and
fractional order dynamic PV system models. This novel algorithm
can be applied to wider energy optimization problems, such as
economic dispatch and unit commitment.
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Appendix 1. Pseudocode of the pSFS algorithm
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