
1 INTRODUCTION 
Wave interaction with porous structures have been 

studied in a range of applications in coastal and off-
shore engineering. The primary purpose of introduc-
ing porous elements in an offshore structure is to dis-
sipate wave energy, analogous to the use of porous 
wave absorbers in narrow wave flumes in the form of 
foam or wire meshes. Porous elements in offshore 
structures tend to be thin in comparison to the wave-
length, comprising a thin perforated or slatted sheet. 
The sharp edges of the perforations cause flow sepa-
ration and dissipation of energy in turbulent eddies.  

Methods for computing wave forces on porous 
structures have been derived in the context of break-
waters (see Huang et al, 2011, for a review of the wide 
literature on this topic), gravity bases for offshore 
wind turbines (Park et al, 2014), motion damping on 
floating structures (e.g. Downie et al, 2000; Williams 
et al, 2000; Lee & Ker, 2002; Molin 2011), aquacul-
ture (e.g. Zhao et al., 2010; Dokken et al. 2017) and 
tuned liquid dampers (e.g. Faltinsen et al, 2011; 
Crowley & Porter, 2012; Molin & Remy, 2013, 
2015). To date, most published work on wave inter-
action with 3D structures with porous elements has 
focused on simple geometries, for which analytical 
solutions can be derived (e.g. Wang & Ren, 1994; 
Williams & Li, 1998, 2000; Williams et al, 2000; 
Zhao et al, 2010; Ning et al., 2017). The boundary el-
ement method (BEM) has been used in several studies 
to compute wave forces on 2D porous structures with 
more complex geometries (e.g. Ijima et al, 1976; 

Sulisz, 1985; Mallayachari & Sundar, 1994; Cho & 
Kim, 2008; Liu et al, 2012; Liu & Li, 2017). Feng et 
al. (2017) proposed a method for introducing dissipa-
tion surfaces (which act in a similar way to porous 
elements) into a 3D BEM model and applied the 
model to study gap resonance between side-by-side 
barges. Dokken et al. (2017) presented a BEM solu-
tion for 3D porous structures, with the restriction that 
the surface of the structure is entirely porous and there 
are no solid elements.  

In the present paper the multi-domain BEM ap-
proach of Dokken et al. (2017) is extended to bodies 
composed of solid parts and porous walls enclosing 
internal volumes of water. The method presented al-
lows the calculation of wave forces on combined 
solid-porous structures of arbitrary shape, which can-
not be calculated analytically. The present solution 
differs from that presented by Feng et al. (2017), in 
that it does not require the calculation of the second 
derivative of the Green function. The solution of Feng 
et al. (2017) is a single-domain approach and there-
fore cannot model the case where a porous wall en-
closes a volume of water. 

The main objective of the present paper is to pre-
sent the verification of the new BEM model against 
published results, rather than to study the behaviour 
of porous structures in detail. The application of the 
BEM model to study the performance of porous float-
ing platforms for offshore wind turbines will be re-
ported in future work. 
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ABSTRACT: Hydrodynamic parameters on structures with porous elements can be significantly altered com-
pared to those on solid structures. The use of a porous support structure for a floating wind turbine could po-
tentially reduce platform motions and wave forces, correspondingly reducing adverse effects on the wind tur-
bine, such as fatigue damage and loss in energy capture. This paper presents a boundary element method (BEM) 
to calculate linear wave forces on solid structures with a porous wall bounding an interior volume of water. In 
the model, the shape of the solid and porous elements of the structure can take arbitrary shapes and be either 
surface-piercing or fully submerged. Initial verification results are presented against existing commercial BEM 
software for solid bodies and analytical results for solid/porous structures with simple geometries. In all cases, 
the comparisons show good agreement, giving confidence that the method can be used in more complex cases 
where analytical results cannot be derived. 



2 FORMULATION 
The structure is assumed to consist of a single solid 
body and a porous wall bounding a volume of water 
connected to this body. The geometry of the solid 
body and porous wall are arbitrary and may be either 
submerged or surface-piercing. The surface of the 
solid body is divided into two parts, an exterior solid 
surface, SE, and an interior solid surface, SI. The po-
rous surface is denoted SP. The normal vectors to the 
body surfaces are defined to point out of the fluid do-
main on the exterior of the porous wall and into the 
fluid domain on the interior of the porous wall, so that 
the same normal vectors are used on the porous wall 
for both the exterior and interior problems. A sketch 
of the setup and notation is shown in Figure 1, which 
shows a truncated cylinder with a solid inner column 
and porous outer wall (a 3D mesh of this geometry is 
also shown in Figure 10). The coordinate system is 
defined with 𝑧 = 0 on the free surface and 𝑧 = −ℎ on 
the sea bed (in the case of finite depth). 
 

Figure 1. Sketch of definition of surfaces, normal vectors and 

internal and external fluid domains. 

 
The fluid is assumed to be inviscid and incompressi-
ble, and its motion is irrotational, so that a velocity 
potential can be used to describe the fluid motion. The 
fluid domain is divided into regions external and in-
ternal to the structure, with the potentials in the exte-
rior and interior domains denoted Φ𝐸 and Φ𝐼. The 
structure is subject to regular linear waves of ampli-
tude 𝐴 and angular frequency 𝜔, propagating in a di-
rection at an angle 𝛽 to the positive x-axis (i.e. 𝛽 = 0 
corresponds to waves propagating from negative to 
positive x). The structure is assumed to make 6DOF 
harmonic motions of amplitude 𝜉𝑗, 𝑗 = 1,… ,6, corre-
sponding to surge, sway, heave, roll, pitch and yaw. 
Under these assumptions the potentials in each do-
main can be written as 
 
 

Φ𝐸,𝐼(𝐱, 𝑡) 

= Re{𝑒𝑖𝜔𝑡 [
𝑖𝑔𝐴

𝜔
[𝜙0(𝐱) + 𝜙7

𝐸,𝐼(𝐱)] + 𝑖𝜔∑𝜉𝑗𝜙𝑗
𝐸,𝐼(𝐱)

6

𝑗=1

]}, 

(1) 

where 𝑔 is the acceleration due to gravity, 𝐱 =
(𝑥, 𝑦, 𝑧) is the position vector, 𝜙0 is the spatial com-

ponent of the incident wave potential, 𝜙7
𝐸,𝐼

 is the spa-

tial component of the scattering potential and 𝜙𝑗
𝐸,𝐼

 

(𝑗 = 1,… ,6) are the spatial components of the radia-

tion potentials. The spatial potentials in each domain 

satisfy the Laplace equation, the linearised free-sur-

face condition and the no-flow condition on the sea-

bed: 

∇2𝜙𝑗
𝐸,𝐼 = 0, 𝑗 = 0,… ,7 (2) 

𝜕𝜙𝑗
𝐸,𝐼

𝜕𝑧
=
𝜔2

𝑔
𝜙𝑗
𝐸,𝐼      on 𝑧 = 0, 𝑗 = 0,… ,7 

(3) 

𝜕𝜙𝑗
𝐸,𝐼

𝜕𝑧
= 0      on 𝑧 = −ℎ, 𝑗 = 0,… ,7 

(4) 

The incident wave potential is given by 

𝜙0 = 𝐷(𝑧) exp(−𝑖𝑘(𝑥 cos𝛽 + 𝑦 sin𝛽)), (5) 

where 𝑘 is the wave number, defined as the positive 

real solution of 
𝜔2 = 𝑘𝑔 tanh(𝑘ℎ), (6) 

and  

𝐷(𝑧) = {

exp(𝑘𝑧) in deep water,

cosh(𝑘(𝑧 + ℎ))

cosh(𝑘ℎ)
in finite depth.

 (7) 

The radiated and scattered potentials in the exte-

rior domain satisfy a radiation condition in the far-

field: 

lim
𝑟→∞

√𝑅 (
𝜕𝜙𝑗

𝐸

𝜕𝑟
+ 𝑖𝑘𝜙𝑗

𝐸) = 0, 𝑗 = 1, . . ,7 (8) 

where 𝑅 = √𝑥2 + 𝑦2. The normal vector to the body 

surface is denoted 𝐧 = (𝑛1, 𝑛2, 𝑛3) and the additional 

notation (𝑛4, 𝑛5, 𝑛6) = 𝐱 × 𝐧 and 𝑛7 = −𝜕𝜙0/𝜕𝐧 is 

adopted. Using this notation, the boundary conditions 

on the solid surfaces are: 

𝜕𝜙𝑗
𝐸,𝐼

𝜕𝑛
= 𝑛𝑗       on 𝑆𝐸,𝐼 , 𝑗 = 1,… ,7. (9) 

The flow through the porous wall in the normal direc-

tion is assumed to be continuous on either side of the 

boundary, so that 

𝜕𝜙𝑗
𝐸

𝜕𝑛
=
𝜕𝜙𝑗

𝐼

𝜕𝑛
      on 𝑆𝑃 , 𝑗 = 1,… ,7. (10) 

It is assumed that the pressure drop across the po-
rous wall is proportional to a linear drag and inertia 
term. Under this assumption, the boundary condition 
on the porous wall can be written as (Sollitt & Cross, 
1972; Yu, 1995) 



𝜕𝜙𝑗
𝐸,𝐼

𝜕𝑛
= 𝑛𝑗 − 𝑖𝑘𝐺(𝜙𝑗

𝐸 −𝜙𝑗
𝐼)   on 𝑆𝑃 , 𝑗 = 1,… ,7 

(11) 
where 𝐺 is the non-dimensional porous effect param-
eter and Re(𝐺) represents the linearised drag effect of 
the porous wall and Im(𝐺) represents the inertial ef-
fect. A value of 𝐺 = 0 corresponds to a solid body 
and increasing 𝐺 corresponds to increasing porosity 
(i.e. increasing size of perforations relative to the 
solid part). 𝐺 = ∞ corresponds to the porous wall not 
being present (i.e. no resistance). 

3 BEM SOLUTION 
Application of Green’s third identity to the domain 

bounded by the external body surfaces (𝑆𝐸 and 𝑆𝑃), 
the free surface, the sea bed and a control surface at 
infinity yields the following integral equation for the 
exterior domain (see e.g. Linton & McIver, 2001): 
−2𝜋𝜙𝑗

𝐸(𝐏) = 

∫ (𝜙𝑗
𝐸(𝐐)

𝜕𝐺(𝐏, 𝐐)

𝜕𝑛𝑄
− 𝐺(𝐏, 𝐐)

𝜕𝜙𝑗
𝐸(𝐐)

𝜕𝑛𝑄
) d𝑆

𝑆𝐸∪𝑆𝑃

, 

𝑗 = 1,… ,7 

(12) 

where 𝐏 and 𝐐 are points on the body surface and 𝐺 
is the wave Green function, defined below, which sat-
isfies conditions (2)-(4) and (8). Note that the inte-
grals over the free surface, sea bed and control surface 
vanish as a result of the conditions (3), (4) and (8). 
Similarly, application of Green’s third identity to the 
domain bounded by the surfaces 𝑆𝐼, 𝑆𝑃 and the free 
surface yields the following integral equation for the 
interior domain: 
2𝜋𝜙𝑗

𝐼(𝐏) = 

∫ (𝜙𝑗
𝐼(𝐐)

𝜕𝐺(𝐏, 𝐐)

𝜕𝑛𝑄
− 𝐺(𝐏, 𝐐)

𝜕𝜙𝑗
𝐼(𝐐)

𝜕𝑛𝑄
) d𝑆

𝑆𝐼∪𝑆𝑃

, 

  𝑗 = 1, … ,7 

(13) 

Note that the opposite sign occurs on first term as 
the surface normal vectors are pointing into the fluid 
in the interior domain. 

The Green function describes the wave potential at 

point 𝐏 = (𝑥, 𝑦, 𝑧) due to a pulsating wave source at 

point 𝐐 = (𝜉, 𝜂, 𝜁). In infinite depth, the Green func-

tion can be written as: 

𝐺(𝐏, 𝐐) =
1

𝑟
+
1

𝑟′
+
2𝐾

𝜋
∫
exp(𝜈(𝑧 + 𝜁))

𝜈 − 𝐾
𝐽0(𝜈𝑟0)d𝜈

∞

0

 

(14) 

and in finite depth it can be written as: 

𝐺(𝐏, 𝐐) =
1

𝑟
+
1

𝑟′′
+ 

2∫
(𝜈 + 𝐾) cosh(𝜈(𝑧 + ℎ)) cosh(𝜈(𝜁 + ℎ))

𝜈 sinh(𝜈ℎ) − 𝐾 cosh(𝜈ℎ)
𝑒−𝜈ℎ𝐽0(𝜈𝑟0)d𝜈

∞

0

, 

(15) 

where 𝐾 = 𝜔2/𝑔 is the infinite-depth wavenumber, 

𝐽0 is the zero order Bessel function of the first kind 

and 

𝑟 = {(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 + (𝑧 − 𝜁)2}1/2, (16) 

𝑟′ = {(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 + (𝑧 + 𝜁)2}1 2⁄ , (17) 

𝑟′′ = {(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2

+ (𝑧 + 𝜁 + 2ℎ)2}−1/2, (18) 

𝑟0 = {(𝑥 − 𝜉)
2 + (𝑦 − 𝜂)2}1/2. (19) 

For the infinite depth case, the Green function has 
been computed using a look-up table method, based 
on the algorithms described by Newman (1985, 
1992). In finite depth, when 𝑟0 ℎ⁄ > 0.1, the Green 
function is computed using the series method defined 
by John (1950) and when 𝑟0 ℎ⁄ ≤ 0.1 the Green func-
tion is computed using the method described by Xie 
et al (2017). 

The integral equations (14) and (15) are solved by 

discretising the body surface into a number of flat 

panels, with 𝑁𝐸 panels on 𝑆𝐸, 𝑁𝐼 panels on 𝑆𝐼 and 𝑁𝑃 

panels on 𝑆𝑃. The panels on the porous surface are 

used for both the interior and exterior boundary inte-

grals. The points 𝐱𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), where the integral 

equations are enforced, are defined to be at the panel 

centroids. The panels are numbered with those on 

solid parts coming first, followed by the panels on the 

porous parts of the structure, so that 𝛟𝑗
𝐸𝑆 =

(𝜙𝑗
𝐸(𝐱1), … , 𝜙𝑗

𝐸(𝐱𝑁𝐸))
𝑇

 are the potentials at the cen-

troids of the solid panels of the exterior surface and 

𝛟𝑗
𝐸𝑃 = (𝜙𝑗

𝐸(𝐱𝑁𝐸+1), … , 𝜙𝑗
𝐸(𝐱𝑁𝐸+𝑁𝑃))

𝑇

 are the potentials at 

the centroids of the exterior porous panels. Similarly, 

define 𝛟𝑗
𝐼𝑆 = (𝜙𝑗

𝐼(𝐱1), … , 𝜙𝑗
𝐼(𝐱𝑁𝐼))

𝑇

 and  𝛟𝑗
𝐼𝑃 =

(𝜙𝑗
𝐼(𝐱𝑁𝐼+1), … , 𝜙𝑗

𝐼(𝐱𝑁𝐼+𝑁𝑃))
𝑇

 for the potentials on the 

solid and porous panels of interior surface.  
Define coefficient matrices for the interior and ex-

terior problems, 𝐃𝐸, 𝐃𝐼, 𝐒𝐸, 𝐒𝐼, as 

𝐷𝑖𝑘
𝐸,𝐼 = (+

𝐸

−𝐼
)2𝜋𝛿𝑖𝑘 + ∫

𝜕𝐺(𝐱𝑖 , 𝐱𝑘)

𝜕𝑛𝑘
d𝑆

𝑆𝑘

, (20) 

𝑆𝑖𝑘
𝐸,𝐼 = ∫ 𝐺(𝐱𝑖 , 𝐱𝑘)d𝑆

𝑆𝑘

, (21) 

where 𝑆𝑘 is the surface of the 𝑘th panel (of the exte-

rior/interior problem respectively), 𝛿𝑖𝑘 is the Kron-

ecker delta function and the notation (+
𝐸

−𝐼
) indicates 

a plus for the matrix 𝐃𝐸 and a minus for the matrix 

𝐃𝐼. The integrals of the singular parts of the Green 

function and its derivative in (21) are computed using 

the algorithms of Newman (1986) and the irregular 

parts are assumed to be constant over each panel. The 

coefficient matrices can be written as block matrices: 



𝐃𝐸,𝐼 = (
𝐃𝑆𝑆
𝐸,𝐼 𝐃𝑆𝑃

𝐸,𝐼

𝐃𝑃𝑆
𝐸,𝐼 𝐃𝑃𝑃

𝐸,𝐼) , 𝐒𝐸,𝐼 = (
𝐒𝑆𝑆
𝐸,𝐼 𝐒𝑆𝑃

𝐸,𝐼

𝐒𝑃𝑆
𝐸,𝐼 𝐒𝑃𝑃

𝐸,𝐼), (22) 

where the submatrices 𝐃𝑆𝑆
𝐸,𝐼

, 𝐒𝑆𝑆
𝐸,𝐼

 and 𝐃𝑃𝑃
𝐸,𝐼

, 𝐒𝑃𝑃
𝐸,𝐼

 corre-

spond to the terms between the solid and porous pan-

els respectively and the other submatrices correspond 

to the remaining terms. If it is assumed that the poten-

tial is constant on each panel, then the integral equa-

tions (12) and (13) can then be written in discrete 

form: 

(
𝐃𝑆𝑆
𝐸 𝐃𝑆𝑃

𝐸

𝐃𝑃𝑆
𝐸 𝐃𝑃𝑃

𝐸 )(
𝛟𝑗
𝐸𝑆

𝛟𝑗
𝐸𝑃) = 

(
𝐒𝑆𝑆
𝐸 𝐒𝑆𝑃

𝐸

𝐒𝑃𝑆
𝐸 𝐒𝑃𝑃

𝐸 )((
𝐧𝑗
𝐸𝑆

𝐧𝑗
𝐸𝑃) − 𝑖𝑘𝐺 (

0
𝛟𝑗
𝐸𝑃 −𝛟𝑗

𝐼𝑃)), 

(23) 

(
𝐃𝑆𝑆
𝐼 𝐃𝑆𝑃

𝐼

𝐃𝑃𝑆
𝐼 𝐃𝑃𝑃

𝐼 )(
𝛟𝑗
𝐼𝑆

𝛟𝑗
𝐼𝑃) = 

(
𝐒𝑆𝑆
𝐼 𝐒𝑆𝑃

𝐼

𝐒𝑃𝑆
𝐼 𝐒𝑃𝑃

𝐼 )((
𝐧𝑗
𝐼𝑆

𝐧𝑗
𝐼𝑃) − 𝑖𝑘𝐺 (

0
𝛟𝑗
𝐸𝑃 −𝛟𝑗

𝐼𝑃)), 

(24) 

where 𝐧𝑗
𝐸𝑆, 𝐧𝑗

𝐸𝑃, 𝐧𝑗
𝐼𝑆 and 𝐧𝑗

𝐼𝑃 are column vectors com-

posed of the variables 𝑛𝑗  corresponding to the panels 

of the solid/porous parts of the exterior/interior sur-

faces respectively. In the expressions above, the 

boundary conditions (9) has been applied on the solid 

panels and (11) has been applied on the porous pan-

els. The expressions above assume a constant poros-

ity coefficient 𝐺 on all panels. However, a variable 

porosity could be accommodated by bringing the co-

efficient 𝐺 inside the last column vector of (23) and 

(24). Collecting terms and combining these two sys-

tems of equations gives a single matrix equation that 

can be solved for the potentials in the interior and ex-

terior domains: 

(

 
 

𝐃𝑆𝑆
𝐸 𝐃𝑆𝑃

𝐸 + 𝑖𝑘𝐺𝐒𝑆𝑃
𝐸 𝟎 −𝑖𝑘𝐺𝐒𝑆𝑃

𝐸

𝐃𝑃𝑆
𝐸 𝐃𝑃𝑃

𝐸 + 𝑖𝑘𝐺𝐒𝑃𝑃
𝐸 𝟎 −𝑖𝑘𝐺𝐒𝑃𝑃

𝐸

𝟎 𝑖𝑘𝐺𝐒𝑆𝑃
𝐼 𝐃𝑆𝑆

𝐼 𝐃𝑆𝑃
𝐼 − 𝑖𝑘𝐺𝐒𝑆𝑃

𝐼

𝟎 𝑖𝑘𝐺𝐒𝑃𝑃
𝐼 𝐃𝑃𝑆

𝐼 𝐃𝑃𝑃
𝐼 − 𝑖𝑘𝐺𝐒𝑃𝑃

𝐼
)

 
 

(

 
 

𝛟𝑗
𝐸𝑆

𝛟𝑗
𝐸𝑃

𝛟𝑗
𝐼𝑆

𝛟𝑗
𝐼𝑃
)

 
 

 

=

(

 
 

𝐒𝑆𝑆
𝐸 𝐒𝑆𝑃

𝐸 𝟎 𝟎

𝐒𝑃𝑆
𝐸 𝐒𝑃𝑃

𝐸 𝟎 𝟎

𝟎 𝟎 𝐒𝑆𝑆
𝐼 𝐒𝑆𝑃

𝐼

𝟎 𝟎 𝐒𝑃𝑆
𝐼 𝐒𝑃𝑃

𝐼
)

 
 

(

 
 

𝐧𝑗
𝐸𝑆

𝐧𝑗
𝐸𝑃

𝐧𝑗
𝐼𝑆

𝐧𝑗
𝐼𝑃
)

 
 
. 

(25) 

The formulation presented here can easily be ex-
tended to multiple bodies or single bodies with multi-
ple unconnected porous domains. However, this is not 
considered further here. 

Once the velocity potentials have been solved, the 

hydrodynamic forces can be evaluated in the normal 

way, by integrating the pressure over the interior and 

exterior surfaces. The pressure is given by the linear-

ised Bernoulli equation 𝑝𝑗 = −𝜌𝜕𝜙𝑗/𝜕𝑡. The excita-

tion force (or moment) in the 𝑗𝑡ℎ mode is the sum of 

the force (or moment) on the internal and external sur-

faces: 

𝐹𝑗 = 𝜌𝑔𝐴 [ ∫ (𝜙0
𝐸 + 𝜙7

𝐸)𝑛𝑗d𝑆

𝑆𝐸∪𝑆𝑃

− ∫ (𝜙0
𝐼 + 𝜙7

𝐼)𝑛𝑗d𝑆

𝑆𝐼∪𝑆𝑃

]. 

 (26) 
Note that the surface normal vectors are pointing 

in the opposite direction in the interior domain so the 
force on the interior surfaces has the opposite sign in 
(26). The added mass, 𝑎𝑖𝑗, and radiation damping co-
efficient, 𝑏𝑖𝑗, are defined by: 

𝑎𝑖𝑗 − 𝑖
𝑏𝑖𝑗

𝜔
= 𝜌 [ ∫ 𝜙𝑖

𝐸𝑛𝑗d𝑆

𝑆𝐸∪𝑆𝑃

− ∫ 𝜙𝑖
𝐼𝑛𝑗d𝑆

𝑆𝐼∪𝑆𝑃

] , 𝑖, 𝑗 = 1,… ,6. 

(27) 

4 VERIFICATION 
The BEM model described in Section 3 has been im-

plemented in MATLAB. Variations on two canonical 

cases are considered for the verification of the BEM 

model – a floating hemisphere and a vertical circular 

cylinder. Results are presented first for the case of a 

solid hemisphere, followed by results for a porous 

hemisphere. For the vertical cylinder, we first con-

sider a bottom-standing solid circular cylinder, then 

the same cylinder surrounded by a porous outer cyl-

inder and finally a truncated cylinder with a porous 

upper wall and solid inner column (sketched in Figure 

1). 

4.1 Hemisphere 

4.1.1 Solid hemisphere 
 

For the case of the solid hemisphere in deep water 
the results from the BEM model have been verified 
against WAMIT version 6.4 (www.wamit.com). 
WAMIT has been run in low order mode (flat panels) 
with the option to remove “irregular frequencies” 
(discussed below) turned off. Running WAMIT in 
this way provides a numerically equivalent system, 
which will serve to verify whether the BEM model 
has been implemented correctly for the case of a solid 
body in deep water. A mesh convergence study was 
conducted in WAMIT and it was found that discretis-
ing the surface using an angular resolution of 𝜋/20 
was sufficient to achieve stable estimates of the hy-
drodynamic coefficients. This resulted in a mesh with 
351 panels, shown in Figure 2. Both WAMIT and the 
BEM model were run using the same mesh and same 
frequencies in the range 0 – 10 𝑘𝑅0, where 𝑅0 is the 
radius.  

http://www.wamit.com/


The resulting non-dimensional surge and heave 

excitation forces, added mass and radiation damping 

from WAMIT and the BEM model are shown in Fig-

ure 3. The results from the two codes coincide ex-

actly, indicating that the BEM model has been imple-

mented correctly and the calculation of the deep water 

Green function is sufficiently precise. The results 

from both codes show the effects of “irregular fre-

quencies”. These are frequencies at which the linear 

system becomes ill-conditioned and the results ex-

hibit non-physical spikes. Methods exist to remove 

these effects for wave-interactions with solid bodies 

(see e.g. Lee & Sclavounos, 1989; Liu & Falzarano, 

2017a, b). However, these methods have not yet been 

implemented in the BEM model and the extension to 

combined solid-porous structures will be considered 

in future work. 

 

 

 
Figure 2. Mesh used in cases 1.1 and 1.2. 

4.1.2 Porous hemisphere 
 

The case of a porous hemisphere in deep water was 
considered by Dokken et al. (2017), who used a mod-
ified version of WAMIT version 5.3. Dokken et al. 
assume that the variable 𝜎 = 𝑘𝐺/𝜔 is constant in 
their porous boundary condition, rather than 𝐺. Zhao 
et al (2010) obtained a good match between numeri-
cal and experimental data for a truncated porous cyl-
inder, by assuming that 𝐺 is constant with frequency 
(but dependent on wave steepness). We have there-
fore opted to use this formulation in our porous 
boundary condition (11). However, for comparison 
with the results of Dokken et al., the BEM model has 
been run with 𝜎 constant. Under this assumption, the 
method presented in Section 3 is identical to that of 
Dokken et al. for the case of a fully porous structure, 
and should be expected to give equivalent results.  

The BEM model was run using the same mesh as 
for the solid case. The nondimensional surge and 
heave excitation forces on the hemisphere are shown 
in Figure 4 and the nondimensional added mass and 
damping coefficients are shown in Figure 5. There is 
good agreement in the excitation forces between the 
BEM model and the modified WAMIT code. A re-
duction in excitation force with increasing porosity is 
evident. The surge force decreases to zero when 
𝐾𝑅0 = 𝜋 2⁄   (𝑅0 = 𝜆 4⁄ ), due to a resonance in the 
interior domain. This effect does not occur for the 
case of the solid hemisphere, shown in Figure 3. 
 

 
Figure 3. Comparison of dimensionless heave and surge excitation force, added mass and damping from BEM model (lines) and 

WAMIT (circles) for solid hemisphere in deep water. 
 



Dokken et al. reported 𝑎11, 𝑎33, 𝑏11 and 𝑏33 for a 

range of values of 𝜎, but did not present results for all 

combinations, so comparisons are shown in Figure 5 

for the cases reported. The results are in good agree-

ment for the cases considered. There is a significant 

variation in the added mass and damping coefficients 

with different values of 𝜎, indicating that responses 

of floating structures could potentially be signifi-

cantly altered through the addition of porous ele-

ments. 

4.2 Cylinders 

4.2.1 Solid vertical cylinder 
For this case, the results from the BEM model are 

compared against an analytical solution for the surge 
excitation force on a bottom-standing vertical cylin-
der of radius 𝑎 in water depth ℎ. This is given in non-
dimensional form as (Mei, 1983): 

𝐹𝑥
𝜌𝑔𝐴𝑎ℎ

=
4

𝑘𝑎𝐻1
′(𝑘𝑎)

tanh(𝑘ℎ)

𝑘ℎ
, (28) 

where 𝐻1 is the first-order Hankel function of the first 
kind and the prime denotes the derivative with respect 
to the arguments. In the case considered, 𝑎 = ℎ/2. 
The mesh used has been discretised using 40 panels 
around the circumference and 20 in the vertical and 
radial directions, giving a total of 1200 panels. The 
results are shown in Figure 6. The numerical and an-
alytical results are in good agreement throughout the 

range, although a small dip in the BEM results at 
𝑘𝑎 ≈ 3.9 is visible, which is a result of an irregular 
frequency (this has been verified through comparison 
to results from WAMIT, not shown here). 
 
 

 

 
Figure 4. Nondimensional heave and surge excitation forces on 

a floating porous hemisphere for three values of porosity coef-

ficient σ. Solid lines are results from BEM model. Circles are 

results reported by Dokken et al. (2017). 

 

 
Figure 5. Nondimensional added mass and damping coefficients for a floating porous hemisphere for three values of porosity coeffi-

cient 𝜎. Solid lines are results from BEM model. Circles are results reported by Dokken et al. (2017). 

 



 
Figure 6. Comparison of normalised surge excitation force on a 

bottom-standing vertical circular cylinder of radius 𝑎 = ℎ/2 

from BEM model and analytical solution 

4.2.2 Concentric porous cylinder 
The second case considered consists of a solid bot-

tom-standing vertical cylinder with a concentric po-
rous outer cylinder. An analytical solution for this 
case was presented by Wang & Ren (1994) and will 
be used for verification of the BEM model. Due to 
space restrictions, the analytical solution is not re-
peated here and the reader is referred to the original 
paper for details. In the case considered, the inner cyl-
inder has radius 𝑎 = ℎ/2 and the outer cylinder has 
radius 𝑏 = 2𝑎 and the porosity coefficient is set as 
𝐺 = 2. The mesh used in this example is shown in 
Figure 7 and has a vertical and radial resolution of 8 
panels and 40 panels around the circumference. This 
results in a total of 624 panels for the external domain 
and 780 panels for the internal domain.  

The normalised surge excitation force on the inner 

and outer cylinders is shown in Figure 8. There is gen-

erally good agreement between the BEM and analyt-

ical models, although the BEM model predicts a mar-

ginally lower second peak in the force on the outer 

cylinder. The force on the outer cylinder goes to zero 

for 𝑘𝑎 ≈ 0.68. There is no simple expression for the 

frequency at which the force on the outer cylinder 

goes to zero. This frequency is a function of the ratios 

between 𝑎, 𝑏 and 𝐺 (see Wang & Ren, 1994, for de-

tails). The combined force on the inner and outer cyl-

inders is shown in Figure 9. Again, there is good 

agreement between the BEM and analytical results 

(as implied by the results in Figure 8). The normalised 

force on the inner cylinder, without the outer cylinder 

present, is also shown. The inclusion of the porous 

outer cylinder leads to a reduction in the total force 

for frequencies above the peak response, but an in-

crease in force at lower frequencies. 

 
Figure 7. Mesh used for case 2.2. Solid panels are shown in yel-

low and porous panels are shown in translucent blue. 

 

 
Figure 8. Normalised surge excitation forces on inner and outer 

cylinder from analytical and BEM models for concentric porous 

cylinders with 𝐺 = 2, 𝑎 = ℎ/2 and 𝑏 = 2𝑎. 
 

 
Figure 9. Total normalised surge excitation forces on concentric 

porous cylinders from analytical and BEM models for case 

shown in Figure 9. Analytical result for inner cylinder only is 

shown for comparison. 

4.2.3 Truncated porous cylinder 
The final case considered is a truncated cylinder 

with a porous upper sidewall and solid inner column. 



An analytical solution for this case was presented by 

Ning et al. (2017). In the example presented, the inner 

cylinder has radius 𝑎 = ℎ/3 and the outer cylinder 

has radius 𝑏 = 2𝑎. The draft of the structure is 𝑑 = 𝑏 

and the draft of the porous upper wall is 𝑑𝑝 = 𝑑/2. 

The mesh used for the BEM model is illustrated in 

Figure 10 and has 780 panels on the external surfaces 

and 585 on the internal surfaces.  

Figure 11 shows the dimensionless surge and 

heave excitation forces from the BEM and analytical 

models for the cases 𝐺 = 0.5 − 0.5𝑖 and 𝐺 = 1 − 1𝑖 
(note that this is the complex conjugate of the values 

of 𝐺 reported by Ning et al. (2017), as they have used 

a time dependency of 𝑒−𝑖𝜔𝑡 rather than 𝑒𝑖𝜔𝑡 in our 

case). The surge excitation forces are in good agree-

ment with the results of Ning et al. However, the 

heave excitation forces show a clear influence of an 

irregular frequency in the BEM model at 𝑘𝑏 ≈ 2.5, 

which causes a discrepancy with the analytical result. 

Despite this, the general trends in the heave forces are 

replicated. Removal of irregular frequency effects 

will be considered in future work. 

 

 
Figure 10. Mesh used for case 2.3 - truncated cylinder with po-

rous upper sidewall and solid inner column. 

5 CONCLUSIONS AND FUTURE WORK 
A method has been presented for calculating wave 

forces on structures with solid and porous elements of 
arbitrary shape. Initial verification results for the new 
method have been presented using commercial BEM 
software as reference for solid bodies and published 
analytical and numerical results for porous/solid 
structures for some simple geometries. The compari-
sons against the reference data showed good agree-
ment in all cases, indicating that the method can be 
used with confidence in more complex cases where 
analytical results cannot be derived.  

The BEM model described here will be used to 

study the load and response characteristics of floating 

offshore wind platforms with porous elements for 

various configurations (spar, semi-submersible and 

tension leg platform). 

 

 
Figure 11. Comparison of dimensionless surge and heave exci-

tation forces on truncated cylinder with porous upper side wall 

from BEM (lines) and analytical models (circles). 
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