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ABSTRACT 
A new method is introduced for combining the long-term 

distribution of sea states with the short-term distribution of 

individual wave or crest heights, conditional on sea state. The 

method uses a Monte Carlo approach to simulate random 

realisations of the maximum wave or crest height in each sea 

state. A peaks-over-threshold analysis is conducted on the 

random maxima in each sea state in order to estimate the long-

term distribution of individual wave or crest heights. The new 

method is significantly simpler than existing methods such as the 

equivalent storm approach, requires fewer assumptions and has 

similar computational times. The new method is applied to a 35 

year dataset of wave buoy measurements and is shown to 

produce almost identical estimates of return values of individual 

crest heights to the equivalent storm method. 

 

1. INTRODUCTION 
Calculating the long-term statistics of extreme individual 

wave and crest heights is an important problem in coastal and 

ocean engineering. To calculate the return periods of individual 

wave or crest heights, the long-term distribution of sea states 

must be combined with the short-term distribution of individual 

wave or crest heights conditional on sea state. The methods for 

combining the long-term and short-term distributions are 

identical for both wave and crest heights, so to avoid referring to 

both throughout the work, the following discussion will be 

presented in terms of wave heights rather than crest heights.   

The various methods proposed for combining these 

distributions can be grouped into three categories, according to 

the ‘counting’ method used. In the first category, the distribution 

of all individual wave heights in a given time period is calculated 

[1, 2]. In the second category, the distribution of the maximum 

wave height in each sea state is calculated [3, 4(Section 6.4.2)]. 

In the third category the distribution of the maximum wave  in 

each storm is calculated [5-12]. Forristall [13] compared various 

models for combining the long-term and short-term distributions 

against long time series of simulated individual wave heights and 

concluded that storm-based models give the most accurate 

estimates of return periods of individual wave heights. The DNV 

GL guidelines [14] also recommend the use of equivalent storm 

methods for estimating extreme individual wave heights. 

In a storm-based model the distribution of the maximum 

wave in each measured storm is calculated and a parametric 

representation of this distribution is fitted using an ‘equivalent 

storm’ model (see [12] for a review of equivalent storm models). 

After each measured storm has been fitted with an equivalent 

storm, the joint distribution of the equivalent storm parameters 

must be estimated. Return periods of storms in which a given 

wave height is exceeded are then calculated by combining the 

joint distribution of equivalent storm parameters with the 

distribution of the maximum height in the storm, conditional on 

the storm parameters.  

There are several drawbacks to equivalent storm method. 

Firstly, the accuracy of the model is dependent on the accuracy 

of the fit of the equivalent storm models to the measured storms. 

Secondly, a model must be established for the joint distribution 

of the equivalent storm parameters. Finally, a double or triple 

integral may be required to combine the joint distribution of 

storm parameters with the distribution of the maximum wave 

height in the equivalent storm, which can be complicated to 

compute (although in some cases this double or triple integral 

can be reduced to a single integral). 

In this paper, an alternative method is proposed for 

combining the long-term and short-term distributions, which 

gives the same results as the equivalent storm method, but 

without the disadvantages mentioned above. The method 

proposed here uses a Monte Carlo approach, where multiple 

random realisations of the maximum wave height in each sea 

state are generated and a peaks-over-threshold analysis is 

conducted on each random realisation. The method does not 

require calculating the distribution of the maximum wave height 

in measured storms, fitting equivalent storms, estimating joint 
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distributions or combining distributions via integration. It is 

therefore much simpler to implement and more robust, since 

there is only one fitting stage rather than three in the equivalent 

storm method. 

The paper is organised as follows. Section 2 presents the 

equivalent storm method, which is used as a baseline for 

comparison. The Monte Carlo method is presented in Section 3. 

An example application of the methods to measured wave data 

is presented in Section 4, and the two methods are compared. 

Finally, conclusions are presented in Section 5. 

2. THE EQUIVALENT STORM METHOD 
The first step in the equivalent storm (ES) method is to 

identify separate storms, in which the maximum wave height can 

be considered as effectively independent events. The criteria 

used to define separate storms typically state that the time 

between the peak significant wave height, 𝐻𝑠, of two adjacent 

storms must be larger than some minimum value and that the 

minimum 𝐻𝑠 between two adjacent peaks must be less than some 

multiple of the lower of the peak. It is possible to derive criteria 

for defining independent storms in a more rigorous manner, 

using the extremogram [15], which is an analogue of the 

autocorrelation function for extreme events. For most locations, 

the extremogram shows that storm peak wave heights separated 

by around 5 days can be considered effectively independent. For 

the present work, storms are defined using a minimum temporal 

separation of 5 days between adjacent peaks. 

Once the time series of sea states has been divided into 

separate storms, the distribution of the maximum wave height in 

each storm can be calculated. First it is necessary to introduce 

some notation. A storm will be defined as a sequence of discrete 

sea states, 𝜎𝑖, with associated sea state parameters 𝐻𝑠(𝑖), 𝑇𝑧(𝑖), 
𝑇𝑚(𝑖), etc. Sea state parameters are defined here in the usual 

way: significant wave height 𝐻𝑠 = 4√𝑚0, zero up-crossing 

period 𝑇𝑧 = √𝑚0/𝑚2, mean period 𝑇𝑚 = 𝑚0/𝑚1 and 𝑚𝑛 =

∫ 𝑓𝑛
∞

0
𝑆(𝑓)d𝑓 is the 𝑛𝑡ℎ moment of the wave frequency 

spectrum, 𝑆(𝑓). The cumulative distribution function (CDF) of 

individual wave heights, conditional on sea state is denoted 

𝐹𝜎(ℎ) = Pr(𝐻 ≤ ℎ|𝜎). For the present discussion, the form of 

the short-term distribution 𝐹𝜎(ℎ) is not important. Examples 

using specific forms of 𝐹𝜎(ℎ) will be presented in Section 4.  

The distribution of the maximum wave height in each sea 

state is calculated by assuming that individual wave heights are 

independent. Under this assumption, the probability that the 

maximum wave height in a sea state, 𝐻𝑚𝑎𝑥 , does not exceed a 

level ℎ in an interval Δ𝑡, is simply the product of the probability 

that each individual wave does not exceed ℎ. The number of 

waves, 𝑁, in the interval Δ𝑡 can be estimated as 𝑁 = Δ𝑡/𝑇𝑧, 

where 𝑇𝑧 is the mean zero up-crossing period.  

Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝜎𝑖) = 𝐹𝜎𝑖(ℎ)
𝑁 (1) 

The distribution of the maximum wave height in a storm is 

calculated by assuming independence of the maxima in each sea 

state. Under this assumption, the probability that the maximum 

wave height in a measured storm, 𝑀𝑆, does not exceed level ℎ, 

is calculated as the product of the probabilities that the maximum 

wave height is not exceeded in any of the sea states over the 

course of the storm: 

Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝑀𝑆) =∏Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝜎𝑖)

𝑘

𝑖=1

 (2) 

where the storm is defined as sea states 𝜎1, … , 𝜎𝑘. 

The next step is to parameterise the distribution (2) in some 

way, with the parametric representation referred to as the 

equivalent storm. Two types of method have been proposed for 

modelling the distribution of the maximum wave height in the 

measured storm. One approach is to model the temporal 

evolution of sea states in a storm using some simplified 

geometric form, such as a triangle [6, 7], trapezoid [10], parabola 

[4, Section 6.54], power law [8, 9] or exponential [11]. The 

parameters of the equivalent storm are fitted so that the 

distribution of the maximum wave height in the equivalent storm 

is matched as closely as possible to the measured storm. This 

approach is reasonably effective because the order of sea states 

in the storm does not affect the distribution of the maximum 

wave height. Therefore, the product in (2) can be re-ordered into 

a monotonically increasing series of sea states, for which a linear, 

power or exponential law is a reasonable fit.  

However, modelling the temporal evolution of sea states is 

not necessary and the distribution of the maximum wave height 

in the storm can be modelled directly. This approach was adopted 

by Tromans and Vanderschuren [5], who assumed that the square 

of the maximum wave height in the storm followed a Gumbel 

distribution, with a fixed relationship between the scale and 

location parameters. Mackay [12] developed this idea and used 

the generalised extreme value distribution (GEV) to model the 

distribution of the maximum wave height in a storm, without 

assuming any fixed relations between the GEV parameters a 

priori. In [12] it was demonstrated that using the GEV to model 

(2) improves the goodness-of-fit by an order of magnitude 

compared to both temporal evolution methods and T&V method. 

The GEV will therefore be used here as the equivalent storm 

model. 

The CDF of the maximum wave height in the equivalent 

storm is defined in terms of the GEV as: 

Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝐸𝑆)  

=

{
  
 

  
 
exp(−(1 + 𝑘 (

ℎ − 𝑎

𝑏
))

−
1
𝑘

) for  𝑘 ≠ 0

exp (−exp (−(
ℎ − 𝑎

𝑏
)))     for  𝑘 = 0

 
(3) 

where 𝑎, 𝑏 and 𝑘 are the location, scale and shape parameters, 

respectively. The GEV can be fitted to (2) by finding the 

parameters that minimise the Cramér–von Mises goodness-of-fit 
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parameter, 𝜔, which quantifies the difference between two 

distributions: 

𝜔2 = ∫ [Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝑀𝑆) − Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝐸𝑆)]
2dℎ

∞

0

 (4) 

The fitting procedure has been implemented in MATLAB 

using the function ‘fminsearch’, which uses a simplex search 

algorithm [16]. The starting point for the search is the moment 

estimators for the Gumbel distribution, i.e. taking 𝑘 = 0 and 

calculating 𝑎 and 𝑏 as functions of the expected value and 

variance of 𝐻𝑚𝑎𝑥 in the measured storm.  

Once all measured storms have been parameterised, the 

next step is to model the joint distribution of the equivalent storm 

parameters. The probability density function (PDF) of the joint 

distribution of storm parameters, 𝑝(𝑎, 𝑏, 𝑘), can be written as 

𝑝(𝑎, 𝑏, 𝑘) = 𝑝(𝑎)𝑝(𝑏, 𝑘|𝑎) (5) 

where 𝑝(𝑎) is the marginal PDF of 𝑎 and 𝑝(𝑏, 𝑘|𝑎) is the joint 

PDF of 𝑏 and 𝑘 conditional on 𝑎. It will be shown in Section 4, 

that the shape parameter, 𝑘, is uncorrelated to 𝑎 and 𝑏, and can 

be assumed independent, so the joint PDF can be further 

simplified as 

𝑝(𝑎, 𝑏, 𝑘) = 𝑝(𝑎)𝑝(𝑏|𝑎)𝑝(𝑘) (6) 

The estimation of 𝑝(𝑏|𝑎) and 𝑝(𝑘) will be discussed in 

Section 4. The distribution of the GEV location parameter, 𝑎, is 

established using a peaks-over-threshold (POT) analysis. In the 

POT method, the generalised Pareto distribution (GPD) is fitted 

to observations exceeding a high threshold. The CDF of the GPD 

is defined conditional on 𝑎 exceeding some high threshold 𝑢: 

Pr(𝑎 ≤ 𝑥|𝑎 > 𝑢)  

=

{
 

 1 − (1 + 𝜉
𝑥 − 𝑢

𝜎
)
−
1
𝜉
  for  𝜉 ≠ 0 and 𝜎 > 0

1 − exp (−
𝑥 − 𝑢

𝜎
)      for  𝜉 = 0 and 𝜎 > 0

 
(7) 

When 𝜉 ≥ 0 the support (that is, the range of values over 

which the distribution is defined) is 0 ≤ 𝑥 < ∞. When 𝜉 < 0 the 

support is 0 ≤ 𝑥 ≤ 𝑢 − 𝜎/𝜉. The parameters 𝜎 and 𝜉 are called 

the scale and shape parameters respectively. When 𝜉 < 0 the 

distribution has a finite end point (i.e. a maximum value, equal 

to 𝑢 − 𝜎/𝜉) and is referred to as short tailed. When 𝜉 > 0 the 

distribution is unbounded from above and referred to as heavy 

tailed or long tailed. When 𝜉 = 0 the distribution has an 

exponential tail. The expected range of shape parameters for 

most environmental variables is −0.5 < 𝜉 < 0.5. 

The threshold is selected by fitting the distribution for a 

range of threshold values and selecting the threshold as the 

lowest value for which the shape parameter of the distribution 

and estimates of high quantiles converge to steady values. The 

method used to estimate the parameters of the GPD can have a 

significant influence on the accuracy of the results [17]. For the 

present work, the empirical Bayesian method [18] has been used. 

This method is computationally efficient and gives lower bias 

and variance in parameter and quantile estimates than commonly 

used methods such as maximum likelihood or probability 

weighted moments (see [19] for a recent comparison of 

estimators for the GPD). 

Once the joint PDF 𝑝(𝑎, 𝑏, 𝑘) has been estimated, the 

distribution of the maximum wave height in a random storm 

exceeding the threshold level can be calculated by integrating the 

short-term distribution of the maximum wave height in a storm 

specified by the GEV parameters 𝑎, 𝑏 and 𝑘 over the long-term 

joint distribution of 𝑎, 𝑏 and 𝑘:  

Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝑅𝑆) = ∫ ∫ ∫ [𝑝(𝑎, 𝑏, 𝑘)

𝑎=∞

𝑎=𝑢

𝑏=∞

𝑏=0

𝑘=1 2⁄

𝑘=−∞

 

Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝐸𝑆(𝑎, 𝑏, 𝑘))] d𝑎 d𝑏 d𝑘 

(8) 

Finally, return periods are calculated as follows. The wave 

height that is exceeded, on average, once every 𝑚 storms, is the 

solution of: 

Pr(𝐻𝑚𝑎𝑥 ≤ 𝐻𝑚|𝑅𝑆) = 1 −
1

𝑚
 (9) 

The wave height that is exceeded once every 𝑇 years on 

average, is known as the 𝑇-year return value, denoted 𝐻𝑇 , and is 

said to have a return period of 𝑇 years. If there are on average 𝜈 

storms exceeding the threshold level every year, then the 𝑇-year 

return value, 𝐻𝑇 , is the value exceed every 𝜈𝑇 storms: 

Pr(𝐻𝑚𝑎𝑥 ≤ 𝐻𝑇|𝑅𝑆) = 1 −
1

𝜈𝑇
 (10) 

The value 𝜈 is estimated as 𝜈 = 𝑘/𝜏 where 𝜏 is the length of 

the dataset in years and 𝑘 is the number of storms in the dataset 

which exceed the threshold value used in the POT analysis. 

3. THE MONTE CARLO METHOD 
The Monte Carlo (MC) method is essentially very simple. 

The idea is that if a long time series of individual wave heights 

was available, then the distribution Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝑅𝑆) could be 

estimated directly from the data, without the need to fit 

equivalent storms. In the MC approach proposed here, the 

required time series of individual wave heights are simulated 

from the time series of sea states and assumed model for the 

short-term distribution of wave heights, conditional on sea state.  

The first step of the method is to generate a random 

realisation of the maximum wave height in each sea state. Next, 

a POT analysis is conducted on the simulated maximum wave 

heights and the GPD is fitted to the declustered threshold 

exceedances. The fitted GPD is an estimate of Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝑅𝑆) 
for this particular realisation. To capture the random variability 

in the simulated maximum wave heights, this process is repeated 

𝑛 times and the average of the estimated GPD parameters is 

taken over the 𝑛 trials to obtain a stable estimate of 

Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝑅𝑆). Return periods of individual wave heights 

can then be calculated in the same way as for the ES model. 

Before going into details, it is important to note that part of 

the POT analysis involves selecting a threshold. It is not sensible 

to select the threshold individually for each trial, so the threshold 
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must be pre-selected somehow. This could be done by selecting 

a threshold for a number of random samples and taking the mean. 

However, it is reasonable to expect that an appropriate threshold 

could be chosen by selecting the threshold based on a 

deterministic set of maxima for each sea state, such as the mean, 

mode or median value of Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝜎). If the short-term 

distribution of individual wave heights is a Weibull distribution, 

then asymptotic arguments can be used to give a closed form 

expression for the mean or mode. However, the median value is 

always simple to calculate, regardless of the form of the short-

term distribution. From (1), the median value of the distribution 

of the maximum wave height in a sea state, 𝐻0.5, is simply: 

𝐻0.5 = 𝐹𝜎
−1 (0.5

1
𝑁) (11) 

The median value of Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝜎) is therefore used to 

select the threshold for the POT analysis. Once (11) has been 

solved for each sea state, the data are declustered and the 

threshold is selected in same way as described in Section 2.  

To simulate a random value for the maximum wave height 

in a sea state it is not necessary to simulate all waves in the sea 

state. Instead, a single random value can be generated from the 

distribution of the maximum wave height 𝐹𝜎(ℎ)
𝑁 . Suppose that 

there are 𝑀 sea states in the metocean dataset. A series of 𝑀 

independent uniformly distributed variables 𝑃𝑖 ∈ [0,1], 𝑖 =
1,… ,𝑀 are generated. The random maximum in each sea state 

is then the solution of  

𝐻𝑚𝑎𝑥,𝑖 = 𝐹𝜎,𝑖
−1 (𝑃

𝑖

1
𝑁𝑖) (12) 

Many models for the short-term distribution assume that 

individual wave or crest heights follow a Weibull distribution: 

𝐹𝜎(ℎ) = 1 − exp (−(
ℎ

𝛼𝐻𝑠
)
𝛽

) (13) 

where the parameter 𝛼 and 𝛽 are dependent on sea state. In this 

case (12) can be written in closed form: 

𝐻𝑚𝑎𝑥,𝑖 = 𝛼𝑖𝐻𝑠,𝑖 (− log(1 − 𝑃𝑖

1
𝑁𝑖))

1
𝛽𝑖

 (14) 

By generating vectors of 𝛼, 𝛽, 𝑁, and 𝑃 for each sea state, 

the simulation of a random realisation of the maximum, takes a 

fraction of a second for a 30-year hourly time series. Even if the 

assumed form of the short-term distribution does not allow a 

closed for solution for the inverse, interpolation of the 

distribution function 𝐹𝜎(ℎ) to the value corresponding to 𝑃1/𝑁 

typically gives an efficient means for the simulation of the 

maximum wave height in each sea state. 

Once the random series of sea state maxima has been 

generated, the data are declustered to identify independent storm 

peak wave heights. Independent storm peaks are defined in the 

same way as for the ES method, described in Section 3, with a 

requirement that peaks must be separated by a minimum of 5 

days and the minimum value between two adjacent peaks must 

be less than 50% of the lower of the two peaks. Once the data is 

declustered the GPD is fitted using the pre-selected threshold and 

the process is repeated 𝑛 times. In the examples considered in 

the following section it was found that taking the mean of the 

estimated GPD parameters over 1000 random trials is sufficient 

to establish a stable estimate of return periods. 

The steps required to calculate Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝑅𝑆) for the 

MC and ES methods are summarised in Fig. 1. The MC method 

is a significantly simpler process than the ES method, requiring 

only one fitting stage, compared to three. The individual steps in 

the MC method are also much simpler to implement in a 

computer program and require less input from the user in 

selecting models for the data. 

 

 
FIGURE 1. Flow charts of steps required to calculate 

𝐏𝐫(𝑯𝒎𝒂𝒙 ≤ 𝒉|𝑹𝑺) for the Equivalent Storm and Monte 
Carlo methods. 

4. APPLICATION TO MEASURED DATA 
The MC approach is illustrated here by applying the 

method to a long time series of wave buoy measurements. The 
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data used here comes from the US NDBC buoy number 46014, 

located off the coast of Northern California in a water depth of 

256m. The dataset consists of 35 years of hourly records of wave 

spectra over the period April 1981 – December 2016. In this 

example, the long-term distribution of individual crest heights 

will be calculated, assuming the short-term distribution follows 

the Forristall second-order model for directionally spread seas 

[20]. The Forristall model assumes a Weibull distribution of crest 

heights (equation (13)) with the parameters 𝛼 and 𝛽 defined in 

terms of the significant steepness, 𝑠𝑚, and Ursell number, 𝑈𝑟𝑠, 
defined as 

𝑠𝑚 =
2𝜋𝐻𝑠
𝑔𝑇𝑚

2
, 𝑈𝑟𝑠 =

𝐻𝑠
𝑘𝑚
2 𝑑3

 (15) 

where 𝑘𝑚 is the finite depth wave number corresponding to 𝑇𝑚 

and 𝑑 is the water depth. The distribution parameters are given 

by 

𝛼 = 0.3536 + 0.2568𝑠𝑚 + 0.0800𝑈𝑟𝑠 

𝛽 = 2 − 1.7912𝑠𝑚 − 0.5302𝑈𝑟𝑠 + 0.2824𝑈𝑟𝑠
2  

(16) 

4.1 Application of the equivalent storm method 
The application of the ES method to this dataset is described 

in detail in [12], and will be summarised here for completeness. 

The time series of sea states was divided into storms using the 

criteria defined in Section 2, which resulted in 1036 separate 

storms, and the GEV was fitted to the distribution of the 

maximum crest height in each storm. The relationship between 

the fitted GEV parameters is shown in Fig. 2. It is evident that 𝑎 

and 𝑏 are strongly linearly correlated and that the shape 

parameter 𝑘 is uncorrelated with either 𝑎 or the residuals 𝑏 −
𝑏𝑓𝑖𝑡 , where 𝑏𝑓𝑖𝑡 = 𝛾 + 𝛿𝑎 is the regression line shown on the top 

plot. Figure 3 shows the distributions of 𝑘 and the residuals 𝑏 −
𝑏𝑓𝑖𝑡 . Both distributions are well modelled by a Student’s t-

distribution. 

The GPD was fitted to the GEV location parameter, 𝑎, for 

threshold levels between 3 and 9m. For each threshold level, the 

dataset was resampled using a bootstrap technique to give 

confidence bounds on the parameter estimates. The variation of 

the shape parameter 𝜉 and the estimated 100-year return value of 

𝑎 with the threshold level is shown in Fig. 4. It is evident that for 

threshold levels above 5m, the shape parameter and return values 

are approximately stable (within the confidence bounds) and that 

for threshold above 7m there is a very high uncertainty in the 

shape parameter, due to the small number of threshold 

exceedances at this level. Based on this analysis, a threshold 

level of 5m was selected. Figure 5 shows the fit of the GPD to 

the location parameter, 𝑎, for this threshold level. It is evident 

that the GPD is a good fit for the data. 

Finally, it is worth noting that due to the narrow range of the 

distributions of 𝑘 and the residuals 𝑏 − 𝑏𝑓𝑖𝑡 , the triple integral in 

(8) can be replaced by a single integral over 𝑝(𝑎), using the mean 

value of 𝑘 and the mean value of 𝑏 conditional on 𝑎 (i.e. the 

linear model shown in Fig. 2). In [12] it was shown that the 

reduction from the triple integral (8) to the single integral (17) 

has no discernible effect on the estimated return values. 

 

 
FIGURE 2. Relations between fitted GEV parameters. 

4.2 Application of the Monte Carlo method 
For the MC method, the only step requiring user input is 

the selection of the threshold level for fitting the GPD. Before 

discussing this, it is instructive to consider the variables that the 

GPD is fitted to in each method. For the MC method, the GPD 

threshold is selected by fitting to the maximum value of 𝐻0.5 in 

each storm (where 𝐻0.5 is the median value of the distribution of 

the maximum crest height in each sea state, defined in equation 

(11)). For the ES method, the GPD is fitted to the GEV location 

parameter, 𝑎. Figure 6 shows the relationship between the GEV 

location parameter 𝑎 and the most probable maximum crest 

height in the storm, 𝐻𝑚𝑝 (i.e. the mode of the distribution given 

by equation (2)). The two variables are almost identical. The 

reason for this is that when the GEV shape parameter 𝑘 is equal 

to zero, the mode of the distribution occurs at ℎ = 𝑎. As the GEV 
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distributions fitted to equation (2) have 𝑘 very close to zero, the 

mode occurs very close to ℎ = 𝑎, resulting in the relationship 

shown in Fig. 6.  

 
FIGURE 3. Histograms and fitted Student’s t-distributions 

for GEV shape parameter 𝒌 and residuals of 𝒃. 
 
 

 
FIGURE 4. GPD threshold selection plots. Bold line 

indicates mean value of parameter estimates and dashed 
lines indicate 95% confidence bounds. 

 
FIGURE 5. Fit of the GPD to GEV location parameter 𝒂 for a 

threshold of 5m. 

 
FIGURE 6. Relationship between GEV location parameter 𝒂 

and 𝑯𝒎𝒑. Red dashed line is linear fit. 

 
FIGURE 7. Relationship between maximum value of 𝑯𝟎.𝟓 in 

a storm and most probable maximum crest height 𝑯𝒎𝒑. 

Black dashed line is 1:1 relation. 
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Figure 7 shows the relationship between 𝐻𝑚𝑝 and the 

maximum value of 𝐻0.5 in each storm. It is evident that 𝐻𝑚𝑝 is 

slightly higher than max(𝐻0.5), but that the two variables are 

strongly correlated. Therefore, it would be expected that a 

suitable threshold for the MC method will be very close to the 

threshold level selected for the ES method and the quality of the 

fit of the GPD in each method will be similar. For the current 

example, the threshold for the MC analysis has been set at the 

same value as used for the ES analysis, at a level of 5m. The 

quality of the fit of the GPD to the values of max(𝐻0.5) at this 

threshold level is very similar to the fit of the GPD to 𝐻𝑚𝑝, 

shown in Fig 5 and is therefore not shown here. 

4.3. Results and discussion 
Figure 8 shows the return values of maximum crest height 

at return periods between 1 and 1000 years, calculated from each 

method, using a threshold level of 5m. The estimates from the 

two methods are in very close agreement, with the maximum 

differences less than 0.12m throughout the range. Some small 

differences between the methods are to be expected, as the POT 

analysis is conducted on different variables for the two methods 

and there is uncertainty related to the subjective choice of 

threshold level (see Fig. 4). Although the same threshold level 

has been used for both methods, the GPD is fitted to different 

variables in each approach, so there will be some differences in 

the results.  

To assess the uncertainty associated with the choice of 

threshold level, the two methods were applied for thresholds 

between 5 and 6m, at intervals of 0.1m. The maximum and 

minimum return values of maximum crest height for this range 

of thresholds is shown in Fig. 9 for each method. The uncertainty 

related to threshold level is similar for each method, with both 

methods having a range of 0.3m at the 100-year level and 0.5m 

at the 1000-year level. The MC method gives slightly higher 

results on average at the 100-year level, but the range of values 

from different threshold overlaps for the two methods. It is 

therefore concluded that the two methods agree within the 

uncertainty due to threshold level. 

5. CONCLUSIONS 
A new method for calculating return periods of individual 

wave and crest heights has been introduced. The new Monte 

Carlo (MC) method is significantly simpler than the equivalent 

storm (ES) method and gives almost identical results. The Monte 

Carlo method allows the distribution of the maximum wave or 

crest height in a random storm, Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝑅𝑆), to be 

estimated directly from the data, without the need for calculating 

distributions of the maximum height in the storm, fitting 

equivalent storms or estimating joint distributions.  

The steps required to calculate Pr(𝐻𝑚𝑎𝑥 ≤ ℎ|𝑅𝑆) for each 

method are summarised in Fig. 1. The MC method contains only 

one fitting stage, rather than the three required in the ES method. 

It is therefore likely to be more generally applicable and robust, 

as fewer assumptions are required. In terms of computational 

effort, the MC method is much simpler to implement and has 

similar computational times. In the ES method, the 

computational effort is in the fitting of the equivalent storms, 

whereas in the MC method the computational effort is in the 

number of iterations required. For the 35 year dataset considered 

in this paper, both methods took around 1 minute to compute on 

a Windows 10 laptop with an Intel Core i7-8550U processor. 
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FIGURE 8. Comparison of return values of maximum crest 
heights from Equivalent Storm and Monte Carlo methods 

for a threshold level of 5m. 

 
FIGURE 9. Minimum and maximum return values of 

maximum crest heights for threshold levels between 5 and 
6m from Equivalent Storm and Monte Carlo methods. 
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