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A B S T R A C T

This paper considers three types of method for calculating return periods of individual wave and crest heights.
The methods considered differ in the assumptions made about serial correlation in wave conditions. The long-
term distribution of individual waves is formed under the assumption that either (1) individual waves, (2) the
maximum wave height in each sea state or (3) the maximum wave height in each storm are independent events.
The three types of method are compared using long time series of synthesised storms, where the return periods of
individual wave heights are known. The methods which neglect serial correlation in sea states are shown to
produce a positive bias in predicted return values of wave heights. The size of the bias is dependent on the shape
of the tail of the distribution of storm peak significant wave height, with longer-tailed distributions resulting in
larger biases. It is shown that storm-based methods give accurate predictions of return periods of individual
wave heights. In particular, a Monte Carlo storm-based method is recommend for calculating return periods of
individual wave and crest heights. Of all the models considered, the Monte Carlo method requires the fewest
assumptions about the data, the fewest subjective judgements from the user and is simplest to implement.

1. Introduction

Estimating the long-term statistics of individual wave or crest
heights is an important problem in the design of offshore and coastal
structures. The long-term statistics of individual waves are dependent
on both the long-term distribution of sea states and the short-term
distribution of wave heights or crests heights, conditional on sea state.
To produce an accurate estimate of the heights of extreme individual
waves, information from the long-term and short-term distributions
must be combined in an appropriate manner. The approaches that have
been proposed for combining these distributions are equally applicable
to both wave heights and crest heights, so to avoid referring to both
throughout the text, the following discussion is presented in terms of
wave heights.

The simplest approach for estimating extreme individual wave
heights at a given exceedance probability, e.g. once in 100 years, is to
estimate the significant wave height, Hs, at a return period of 100-years
then calculate the most probable maximum wave height in that sea
state, assuming a duration of somewhere between 3 and 6 h (see e.g.
Hogben, 1990; Tucker and Pitt, 2001). There are several problems with
this approach. Firstly, the appropriate duration of sea state to use for
calculating the most probable maximum wave height is not clear.
Secondly, this approach neglects the probability that the largest wave
could occur in a sea state other than the 1 in 100-year Hs. This can lead

to significant underestimates in predictions of extremes, since there will
be several sea states with Hs close to the most severe value, either
within the same storm or in separate storms (Carter and Challenor,
1990).

To overcome the problems of the simple approach, various methods
have been proposed to combine the long-term and short-term dis-
tributions that account for the probability of large waves occurring in
any sea state. Battjes (1970) calculated the total number of waves ex-
ceeding a level in a given interval and divided this by the total number
of waves in the interval to derive an estimate of the long-term dis-
tribution of all individual wave heights. Krogstad (1985) proposed a
method for calculating the long-term distribution of the maximum
wave height in an interval, derived in terms of the distribution of the
maximum wave height in each sea state during the interval (see also
Prevosto et al., 2000; Krogstad and Barstow, 2004). Various methods
have also been proposed for calculating return periods of individual
wave heights from the distribution of the maximum wave height in
each storm (Jahns and Wheeler, 1973; Ward et al., 1979; Haring and
Heideman, 1980; Boccotti, 1986, 2000; Forristall et al., 1991; Tromans
and Vanderschuren, 1995; Arena and Pavone, 2006; Fedele and Arena,
2010; Laface and Arena, 2016; Mackay and Johanning, 2018a; b).

Although the assumption is not always explicit in the derivations of
each approach, the various methods proposed all have the common
feature of calculating the distribution of the maximum wave height in a
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random “event”, where the event is either a storm, a sea state, or a
single wave. In the last case the maximum wave height in the event is
just the individual wave height. Long-term statistics of individual waves
are then calculated from the random event distribution, assuming that
occurrences of events are independent.

The assumption of independence of these events is not true in
general, with records of wave measurements exhibiting serial correla-
tion at multiple scales, with correlation between successive individual
wave heights, sea states and storms. In the statistical literature, the
effect of serial correlation on estimates of extreme values is often
quantified using the extremal index, which can be introduced as fol-
lows. Suppose that …X X, , n1 are a sequence of n independent variables
with common distribution function F . In this case, the distribution of
the maximum observation is given by … < =X X x F xPr(max{ , , } ) ( )n

n
1 . If

instead …Y Y, , n1 are a stationary process, also with common distribution
function F , but with some level of serial correlation, then subject to
certain regularity conditions, it can be shown that

… < =Y Y x F xPr(max{ , , } ) ( )n
θn

1 , where ∈θ [0,1] is known as the ex-
tremal index (see e.g. Coles, 2001). Serial correlation effectively re-
duces the probability of large observations in a sequence of a given
length. Therefore, for processes with <θ 1, assuming that observations
are independent will lead to a positive bias in the estimates of extreme
values. Some studies have proposed estimating θ explicitly and using
this in the estimation of extremes (e.g. Fawcett and Walshaw, 2012).
However, obtaining a reliable estimate of θ is difficult in practice and
subject to considerable uncertainties (Davis et al., 2013). For oceano-
graphic data it is more common to adopt the peaks-over-threshold
scheme which selects events that are approximately independent, en-
suring that ≈θ 1 (Jonathan and Ewans, 2013).

The methods proposed by Battjes (1970) and Krogstad (1985) (re-
ferred to as the ‘all-wave’ (AW) and ‘sea state maxima’ (SSM) methods
respectively from here onwards) and the various storm-based methods
make implicit assumptions about independence between events. The
AW method assumes that all wave heights are independent, the SSM
method assumes that sea state maxima are independent, and storm-
based methods assumes that the maximum wave heights in separate
storms are independent. Given the serial correlation in wave height
time series, the three methods would be expected to give different re-
sults, with the AW method producing the highest estimates and storm-
based methods producing the lowest estimates.

Forristall (2008) compared estimates of the long-term distribution
of individual wave heights from the AW, SSM and storm-based
methods. Forristall conducted Monte Carlo simulations of 100,000
years of individual wave heights from synthetic storms, assuming that
the time series of Hs in a storm follows a triangular shape with a fixed
relationship between the peak Hs and duration of the storm. The
duration, D, of the storm was defined to be the time for which >H 0s
and a value of =D H8 s peak, was used, where D is in hours. The zero-
crossing period,Tz , was assumed to be constant at 10s and wave heights
were assumed to follow a Rayleigh distribution. It was shown that AW
and SSM methods produce a positive bias in estimates of the 100-year
wave height, consistent with both models neglecting serial-correlation
effects. Forristall showed that the storm-based method of Tromans and
Vanderschuren (1995) gave the correct return values of individual
wave heights when applied to the synthetic triangular storm data with
Rayleigh distributed wave heights.

Forristall's study provides a useful insight into the differences be-
tween various methods for calculating return periods of individual
waves. However, due to the assumptions about the fixed shape of the
storms and constant wave period, it is difficult to draw conclusions
about the accuracy of storm-based methods when applied to real data.
The purpose of this paper is to compare methods for estimating return
periods of individual wave heights based on more realistic simulations
of synthetic storms, where the wave period varies throughout the storm
and the temporal evolution of sea state parameters is based on mea-
sured data. In the current work, a block-resampling method is used

generate random time series of realistic storm histories, which are used
to compare various methods of estimating return periods of individual
wave heights. The block-resampling method divides a time series of
measured wave data into discrete blocks consisting of storms where the
peak wave heights can be considered approximately independent. The
problem of determining time scales over which storm peak wave
heights can be considered independent is also discussed in some detail.

The results presented in this paper also have implications for the
estimation of extreme load values on marine structures. The “full long-
term response analysis” method advocated by some authors (e.g.
Sagrilo et al., 2011; Naess and Moan, 2012; Giske et al., 2017) is es-
sentially a method for forming the long-term distribution of the max-
imum load in each sea state, analogous to the SSM method for wave and
crest heights. This method is therefore likely to be subject to the same
problems associated with neglecting serial correlation in sea states.
Methods for calculating extreme loads which account for serial corre-
lation in sea states have been proposed by other authors (e.g. Forristall
et al., 1991; Tromans and Vanderschuren, 1995). However, the focus of
this work is on wave and crest heights, and the effect of serial corre-
lation on extreme load values is beyond the scope of the paper.

The paper starts in Section 2 with a brief review of how return
periods and return values are defined in the context of the various types
of long-term distributions considered. Section 3 presents a short dis-
cussion of models for the short-term distribution of wave and crest
heights conditional on sea state. Section 4 presents the mathematical
derivation of the methods for combining the long-term and short-term
distributions, and highlights where various assumptions about in-
dependence are made – either implicitly or explicitly. The methods are
compared in a simplified example in Section 5, which isolates the ef-
fects of serial correlation in sea states. The methods are then applied to
measured data in Section 6, providing a quantitative comparison of the
effect the various assumptions made in each method in a real situation.
The accuracy of the methods is compared in Section 7 using Monte
Carlo simulations of synthetic storms. Finally, conclusions are pre-
sented in Section 8.

2. Return periods & return values

The methods for estimating the long-term distribution of individual
wave heights considered in this paper are used to define return periods
and return values in slightly different ways. It is therefore useful to
review how return periods and return values are defined in each con-
text. Return values are defined in terms of the distribution of the
maximum wave height in a year. We denote the probability that the
maximum individual wave height, Hmax, does not exceed h in any year
selected at random as ≤H hPr( 1 year)max . The T -year return value of
individual wave height, HT , is then defined as the value which has an
exceedance probability T1/ in any year:

> = >H H
T

TPr( 1 year) 1 , 1max T (1)

The duration T is referred to as the return period and is the average
period between exceedances of HT . Over the last few decades, the
peaks-over-threshold (POT) method has gained popularity over the
annual-maxima method (see Jonathan and Ewans, 2013, for a review of
the use of POT in an oceanographic context). In this method, the dis-
tribution of the annual maximum is not estimated explicitly. Instead,
the distribution of independent threshold exceedances is estimated. If
each independent threshold exceedance is described as an ‘event’ then
return values of wave heights can be defined in terms of the distribution
of the maximum wave height in a random event, as the solution of:

> = >H H
Tm

T
m

Pr( event) 1 , 1
max T (2)

where m is the expected number of events per year (see e.g. Coles,
2001). In the present context, the event is either a storm, sea state or
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individual wave.
The definitions (1) and (2) lead to slightly different return values for

low return periods, but the differences become negligible at larger re-
turn periods. This can be seen as follows. The distribution of the max-
imum wave height in a year can be calculated by assuming in-
dependence of maxima in each event as:

≤ = ≤H h H hPr( 1 year) Pr( event) ,max max
m (3)

Substituting (3) into (1) and using a Taylor series expansion gives:

≤ = ⎛
⎝

− ⎞
⎠

= − + ⎛
⎝

⎞
⎠

H H
T Tm

O
T

Pr( event) 1 1 1 1 1
max T

m1/

2 (4)

So, the two definitions are equivalent for large T . In practice the
difference is negligible for ≥T 10, so both definitions will be used in the
following discussions, depending on which is more appropriate.

3. Short-term distribution of wave heights conditional on sea state

A sea state, σ , is defined to be a period of time in which the wave
conditions can be considered approximately stationary, with the dura-
tion normally defined in the range 30min to 3 h. A sea state is defined
in terms of the wave spectrum and summarised in terms of spectral
parameters, such as significant wave height =H m4s 0 , zero up-
crossing period =T m m/z 0 2 , mean period =T m m/m 0 1, where

∫=
∞

m f S f f( )dn
n

0
is the nth moment of the wave frequency spectrum,

S f( ).
The short-term distribution of wave heights, H , conditional on sea

state is denoted

≤H h σPr( | ). (5)

Models for (5) in terms of sea state parameters and water depth is
the subject of ongoing research and it is beyond the scope of this work
to provide a review of the extensive literature on this topic. The focus of
this work is on how to combine the short-term distribution (5) with the
long-term distribution of sea states. The methods described are ap-
plicable to any model for the short-term distribution. The short-term
distribution is primarily dependent on Hs, but is also affected by the
water depth, wave steepness, spectral bandwidth, directional spread
and currents. In the following, it is assumed that the model for the
short-term distribution adequately captures these effects.

4. Long-term distributions

4.1. Long-term distribution of all wave heights

Battjes (1970) proposed a method for calculating return values of
individual wave heights in terms of the long-term distribution of all
wave heights. The probability that any wave selected at random ex-
ceeds height h is calculated as the ratio of the expected number of
waves exceeding h per year to the expected number of waves per year.
The expected number of waves exceeding h in a sea state is

= >M h N T H h σ( ) ( ) Pr( | ),σ z (6)

where =N T D T( ) /z σ z is the expected number of waves in a sea state, Dσ
is the duration of the sea state, normally assumed to be somewhere in
the region 1–6 h, and Tz is the zero up-crossing period. The expected
number of waves exceeding h in a year, denoted M h( )yr , is calculated by
integrating M h( )σ over the probability of occurrence of sea states and
multiplying by the number of sea states per year, NPY :

∫ ∫= >
∞ ∞

M h NPY p H T N T H h σ dH dT( ) ( , ) ( )Pr( | ) .yr s z z s z
0 0 (7)

The occurrence of sea states is specified in terms of p H T( , )s z , the
joint probability density function of Hs and Tz. This implicitly assumes
that the short-term distribution is only influenced by Hs and Tz , which,

as discussed in Section 3, is not necessarily true. The effect of other sea
state parameters on the short-term distribution could be captured by
using the joint density function of multiple parameters, however, this
quickly becomes very complicated as the number of variables is in-
creased. In some applications of the AW method, the joint density
function is used (e.g. Hagen et al., 2017). However, in most applications
(7) is simplified as follows. To avoid having to model joint distribution,
the joint density function is written as =p H T p H p T H( , ) ( ) ( )s z s z s , and
the mean number of waves for a given Hs is defined as

∫=
∞

N H p T H N T T( ) ( ) ( )d .s z s z z
0 (8)

Substituting this back into (7) gives:

∫= >
∞

M h NPY p H N H H h σ H H( ) ( ) ( )Pr( | ( ))d .yr s s s s
0 (9)

In this approach, all the sea state variables that influence the short-
term distribution must be modelled as functions of Hs.

In the original AW method proposed by Battjes, the expected
number of waves in any sea state selected at random is calculated as

∫=
∞

N p H N H dH( ) ( ) .r s s s
0 (10)

The expected number of waves per year is therefore N NPY.r and
the probability that any wave selected at random exceeds height h is

∫

> =

= >
∞

H h
M h

N NPY

N
p H N H H h σ H H

Pr( any wave)
( )

.
1 ( ) ( )Pr( | ( ))d

yr

r

r
s s s s

0 (11)

The distribution of the annual maximum wave height is then cal-
culated as:

≤ = ≤ ⋅H h H hPr( 1 year) Pr( |any wave)max
N NPYr (12)

This calculation makes the implicit assumption that individual wave
heights are independent, which, as discussed in the introduction, is not
true.

Tucker (1989) pointed out that Nr is sensitive to the number of
waves in low sea states and that it seems counter-intuitive that this
should influence the extreme values. Tucker noted that the T -year re-
turn value of individual wave height is the value of h for which the
expected number of waves exceeding h per year is =M h T( ) 1/yr . The
annual distribution can therefore be calculated directly from (1) and (9)
as:

∫
≤ = −

= − >
∞

H h M h

NPY H h σ H p H N H H

Pr( 1 year) 1 ( )

1 Pr( | ( )) ( ) ( )d .

max yr

s s s s
0 (13)

Note that this definition is only valid for <M h( ) 1yr . Although it is
not immediately obvious from (13), Tucker's expression for the annual
distribution implicitly assumes that individual wave heights are un-
correlated. Expanding the original Battjes expression (11) as a Taylor
series, we have

≤ = ≤

= −

= − +

⋅

⋅( )
H h H h

M h O M h

Pr( 1 year) Pr( |any wave)

1

1 ( ) (( ( )) )

max
N NPY

M h
N NPY

N NPY

yr yr

( )
.

2

r

yr

r

r

(14)

In Tucker's definition =M h T( ) 1/yr , so for largeT the terms of order
M h( ( ))yr

2 are negligible and the two expressions are equivalent.
Therefore, both Battjes' and Tucker's expressions for the distribution of
the maximum wave height in a year can be thought of as being formed
under the assumption that there is no serial correlation in individual
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wave heights. This assumption is discussed further in the following
section.

4.2. Long-term distribution of sea state maxima

The long-term distribution of the maximum wave height in a sea
state can be calculated in two ways, with one approach based on an
average over time and the other based on an average over the prob-
ability of occurrence of sea states. Both methods give equivalent results,
but it is not immediately obvious to see this from looking at the ex-
pressions. The temporal average method will be presented first and it
will then be shown how it is equivalent to the probabilistic method.

The distribution of the maximum wave in a sea state is usually
calculated by assuming that successive wave heights are independent,
so that

≤ = ≤H h σ H h σPr( | ) Pr( | ) .max
N (15)

where =N D T/σ z is the expected number of waves in the sea state, as
defined in the previous section. In reality, consecutive wave and crest
heights are correlated, with the largest waves occurring in groups.
Naess (1985) showed that for linear waves from a JONSWAP spectrum,
the effect of ignoring correlation between successive waves has a neg-
ligible influence on the distribution of the maximum wave height.
Fedele (2016) considered the effect of correlation between successive
wave crests using the linear model of Fedele (2005) and also concluded
that correlation could be neglected for typical broadbanded waves from
a JONSWAP spectrum. Fedele (2016) also noted that for the case of
nonlinear waves, since the nonlinear harmonics are phase-locked to the
linear components, the dependence between successive crests is un-
likely to be affected by nonlinearities. Janssen (2015) suggested that it
is more appropriate to characterise N as a function of the number of
wave groups in the record, as it is more plausible that the maximum
wave height in each group is independent than it is that successive
wave heights are independent. However, this idea has not been pursued
in this work.

The maximum wave heights in successive sea states can be con-
sidered independent, in the sense that the maximum height is depen-
dent only on the sea state parameters and not the maximum height in
adjacent sea states. The distribution of the maximum wave height in the
time interval A[0, ] can therefore be written as:

≤ = ∏ ≤

= ∏ ≤

= ∑ ≤

=

=

=( )

H h A H h σ τ

H h σ τ

H h σ τ

Pr( [0, ]) Pr( ( ))

Pr( | ( ))

exp ln[Pr( | ( ))]

max i
k

max i

i
k

i
D T τ

i
k D

T τ i

1

1
/ ( )

1 ( )

σ z i

σ
z i (16)

where ∈τ A[0, ]i . As the duration of each sea state, Dσ , tends to zero,
the summation in (16) can be expressed as an integral (Borgman, 1973):

∫≤ = ⎛

⎝
⎜ ≤ ⎞

⎠
⎟H h A

T t
H h σ t tPr( [0, ]) exp 1

( )
ln[Pr( ( ))]d ,max

A

z0 (17)

Equations (16) and (17) give expressions for the distribution of the
maximum wave height in an interval A[0, ] if the time series of sea
states is known, buy they contain no information about the long-term
distribution of sea states. By applying the ergodic assumption (Naess,
1984) that, on average, the length of time that sea states are in the
interval +H H dH[ , ]s s s during time A[0, ] is =t Ap H Hd ( )ds s, the dis-
tribution (17) can be rewritten as (Krogstad, 1985):

∫≤ = ⎡

⎣
⎢ ≤ ⎤

⎦
⎥

∞

H h A A
T H

p H H h σ H HPr( [0, ]) exp 1
( )

( )ln[Pr( | ( ))]dmax
z s

s s s
0

(18)

Note that in moving from the integral over time to the integral over
Hs, it must be assumed that Tz and other sea state parameters can be
modelled as taking a mean value conditional on Hs, without affecting

the calculation.
The application of the ergodic assumption in passing from (17) to

(18) effectively counts the proportion of sea states which exceed a
threshold level but does not account for temporal clustering of sea
states in storms. To make this explicit, if =A Dσ , then, recalling

=N H D T H( ) / ( )s σ z s and using (15), gives

∫≤ = ⎡

⎣
⎢ ≤ ⎤

⎦
⎥

∞

H h p H H h σ H HPr( any sea state) exp ( )ln[Pr( | ( ))]dmax s max s s
0

(19)

Putting = ⋅ =A NPY D 1σ year gives

∫≤ = ⎡
⎣⎢

≤ ⎤
⎦⎥

= ≤

∞
H h NPY p H H h σ H H

H h

Pr( 1 year) exp ( )ln[Pr( | ( ))]d

Pr( any sea state)

max s max s s

max
NPY

0

(20)

So, in Krogstad's formulation (18), the annual distribution is identical to
that formed under the assumption that the maxima in each sea state are
independent.

A distinction should be made between the type of independence
assumed to derive (16) and the type of independence assumed in (18).
In the derivation of (16) it is assumed that the maximum wave height in
each sea state is dependent only on the sea state parameters and not on
the maximum height in adjacent sea states. In this expression, the va-
lues of the sea state parameters are assumed to be known, such as
would be the case for a measured time series of sea states in a storm. In
(18) the sequence of sea states over the year are not known, only their
marginal distribution is known. By replacing the integral over a known
time series of sea states (17) with an integral over the marginal dis-
tribution of sea states (18), the implicit assumption is made that there is
no serial correlation in sea states. This implicit assumption is made
clear by equations (19) and (20). As noted in the introduction, serial
correlation reduces the probability of large observations in a sequence
of a given length. This effect is not accounted for in the model of
Krogstad (1985).

4.2.1. Connection to other formulations
Krogstad's model can be shown to be equivalent to other expressions

for the long-term distribution of sea state maxima. Sagrilo et al. (2011)
noted that by using Taylor series expansions for the exponential and
logarithm terms, Krogstad's expression (18) can be shown to be ap-
proximately equal to the probabilistic average. Using the Taylor series
expansion for the logarithm = − +x x O xln( ) 1 ( )2 and noting that

∫ =
∞

p H H( )d 1s s
0

gives

∫≤ ≈ ⎡

⎣
⎢ ≤ − ⎤

⎦
⎥

∞

H h p H H h σ H HPr( any sea state) exp ( )Pr( | ( ))d 1max s max s s
0

(21)

Note that the approximation ≈ −x xln( ) 1 is an identity when
=x 1, and for the values of h relevant to extremes,

≤ ≈H h σ HPr( | ( )) 1max s , so this approximation of the logarithm term is
accurate for this purpose. Similarly, using the Taylor series expansion

≈ +x xexp( ) 1 (which is an identity for =x 0 and a good approxima-
tion in this case) gives

∫≤ ≈ ≤
∞

H h p H H h σ H HPr( any sea state) ( )Pr( | ( ))dmax s max s s
0 (22)

This expression, given by Tucker and Pitt (2001, Section 6.4.2), is
the population mean, whereas Krogstad's expression (18) is the ergodic
mean. These two expressions differ slightly for lower values of h, but
are almost identical for the higher values of h relevant to extremes.
However, Krogstad's expression is more accurate to compute as it uses
the logarithm of ≤H h σ HPr( | ( ))max s .
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Krogstad's model can also be related to the AW model as follows.
Taking = ⋅ =A NPY D 1σ year, in (18) and using the same linear ex-
pansions for the exponential and logarithm terms gives:

∫≤ ≈ + ≤ −
∞

H h NPY p H N H H h H HPr( 1 year) 1 ( ) ( )(Pr( | ) 1)d ,max s s s s
0

(23)

which is identical to (13). It is somewhat surprising that the AW and
SSM methods result in approximately equivalent expressions for the
distribution of the annual maximum wave height. However, if we
consider that both models assume that there is no serial correlation
between individual wave heights or sea states, then the reason for the
equivalence becomes apparent. In the examples considered in Sections
5–7 the AW and SSM methods show differences for return periods less
than 10 years but give nearly identical results for higher return periods.

4.3. Long-term distribution of storm maxima

A storm can be thought of as a sequence of sea states, where wave
heights increase to a peak value and then decrease again. The dis-
tribution of the maximum wave height in a storm can be calculated
using (16) where the time interval A[0, ] is defined to be the duration of
the storm. The process of partitioning a time series into separate storms
is analogous to defining “declustering” criteria in the peaks-over-
threshold (POT) method (see Coles, 2001). The criteria used to define
separate storms typically state that the time between the peak Hs of two
adjacent storms must be larger than some minimum value. In some
models an additional criterion is used, requiring that the minimum Hs
between two adjacent peaks must be less than some multiple of the
lower of the peak. The criteria for defining what constitutes separate
storms can be defined more rigorously by considering the correlation
between successive storm peak wave heights. This will be discussed in
more detail in Section 6.2. For now, it is assumed that the time series
has been partitioned into discrete blocks, constituting storms where the
peak wave heights can be considered independent.

The distribution of the maximum wave height in any storm selected
at random, denoted ≤H hPr( |any storm)max , can be estimated in two
ways. In the first method, the distributions of the maximum wave
height in the measured storms can be parameterised in some way, in
terms of a statistically equivalent storm, and the long-term distribution
of storm parameters can be combined with the short-term distribution
for the storm, in a manner that is analogous to the SSM and AW
methods. Alternatively, ≤H hPr( |any storm)max can be estimated di-
rectly from the data using a Monte Carlo method. The two methods are
described in Sections 4.3.1 and 4.3.2.

4.3.1. The equivalent storm method
The distribution of the maximum wave height in a measured storm

will be denoted ≤H hPr( |MS)max and the distribution for the equivalent
storm will be denoted ≤H hPr( |ES)max . Two types of approach for
parameterising ≤H hPr( |MS)max have been proposed. One approach is
to model the temporal evolution of sea states in a storm using some
simplified geometric form, such as a triangle (Boccotti, 1986, 2000;
Arena and Pavone, 2006; Laface et al., 2017), trapezoid (Martin-
Soldevilla et al., 2015), parabola (Tucker and Pitt, 2001, Section 6.5.4),
power law (Fedele and Arena, 2010; Fedele, 2012; Arena et al., 2014)
or exponential law (Laface and Arena, 2016). In most of the ap-
proaches, the parameters of the equivalent storm are fitted using an
iterative procedure so that the distribution of the maximum wave
height in the equivalent storm is matched as closely as possible to the
measured storm (although Fedele (2012) provided an explicit formula
for the duration of the equivalent storm). This approach is reasonably
effective because the order of sea states in the storm does not affect the
distribution of the maximum wave height. Therefore, the product in
(16) can be re-ordered into a monotonically increasing series of sea

states (in terms of the values of Hs), for which a linear, power or ex-
ponential law is a reasonable fit. The drawback of this approach is that
only the temporal evolution of Hs is modelled. It is therefore necessary
to establish models for the mean values of Tz and other sea state
parameters as a function of Hs, in the same way as for the AW and SSM
models.

The other approach is to model ≤H hPr( |MS)max directly and define
the equivalent storm as a statistical distribution rather than a time
series of Hs. This approach was adopted by Tromans and Vanderschuren
(1995), who assumed that the square of the maximum wave height in
the storm followed a Gumbel distribution. Mackay and Johanning
(2018a) developed this idea and used the generalised extreme value
distribution (GEV) to model the distribution of the maximum wave
height in a storm. They demonstrated that using the GEV to model

≤H hPr( |MS)max improves the goodness-of-fit by an order of magnitude
compared to both temporal evolution methods and the Tromans and
Vanderschuren (TV) method. Moreover, the GEV model was shown to
be more robust than both the TV and temporal evolution methods to
uncertainties in the models for the distribution of storm parameters.
The GEV model also results in a much simpler form for ≤H hPr( |ES)max
than temporal evolution methods.

The TV method is recommend in several metocean design standards
(ISO, 2015; DNV GL, 2017) and will therefore be considered as a re-
ference model in comparison to the GEV model. The temporal evolution
methods will not be considered further.

In the TV method the distribution of the maximum wave height in
the equivalent storm is defined as
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Pr( ) exp exp ln( ) 1 ,max
mp

2

(24)

where N is the number of waves in the storm and Hmp is the most
probable maximum wave height in the storm (i.e. the mode of

≤H hPr( |MS)max ). Tromans and Vanderschuren (1995) noted that
≈Nln( ) 8 for Northern European winter storms, but did not state ex-

plicitly how they estimated Nln( ). Mackay and Johanning (2018a)
considered two options for calculating Nln( ). In the first method, Nln( )
was calculated in terms of the moments of ≤H hPr( |MS)max , as

=N πH Hln( ) /(std( ) 6 )mp max
2 2 . In the second method the value of Nln( )

was determined numerically by finding the value that minimises the
difference between ≤H hPr( |MS)max and ≤H hPr( |ES)max , quantified in
terms of the Cramér–von Mises goodness-of-fit parameter, ω:

∫= ≤ − ≤
∞

ω H h H h h[Pr( |MS) Pr( |ES)] dmax max
2

0

2

(25)

It was demonstrated that the second method gave a better fit to the
data. However, the moment based estimators are recommended in DNV
GL (2017) and will therefore be used here.

Mackay and Johanning (2018a) defined the distribution of the
maximum wave height in the equivalent storm in terms of the GEV as:

⎜ ⎟

≤ =

⎧

⎨
⎪

⎩
⎪

⎛
⎝

− + ⎞
⎠

≠

− − =

− −

−( )
( )

( )
( )
( )

H h
k k

k
Pr( ES)

exp 1 for 0

exp exp for 0
max

h a
b

h a
b

k
1

(26)

where a, b and k are the location, scale and shape parameters, re-
spectively. The GEV can be fitted to (16) by finding the parameters that
minimise ω. The first guess for the parameters of the GEV is defined by
assuming =k 0, which from the properties of the GEV, then implies

=a Hmp and =b H π6 std( MS)/max . The parameters that minimise ω
are then found using a simplex search technique (Lagarias et al., 1998).
Mackay and Johanning (2018a) demonstrated that the GEV provides an
excellent fit to ≤H hPr( |MS)max , with a bias of less than 0.2% in
quantiles up to an exceedance probability of −10 3, meaning that there is
very little inaccuracy introduced by parameterising the storm using the
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GEV, compared to modelling all sea state variables as directly related to
Hs.

Once each measured storm has been fitted with an equivalent storm,
the distribution of the maximum wave height in a random storm can be
calculated using the law of total probability, by integrating

≤H hPr( |ES)max over the long-term joint density function of storm
parameters, in a manner analogous to the SSM model (22). In the case
of the TV model, Nln( ) is assumed to be constant and the mean value
over all storms is used. For the GEV model Mackay and Johanning
(2018a) showed that the triple integral over the joint density function
p a b k( , , ) could be reduced to a single integral over p a( ) using the
mean value of k and a linear model = +b A Ba established using re-
gression. It was also shown that the GEV location parameter a is almost
identical to Hmp (since the mean value of k was close to zero). There-
fore, the distribution of the maximum wave height in a random storm
can be written in the same way for both the TV and GEV models as:

∫≤ = ≤H h p H H h HPr( any storm) ( )Pr( ES) d .max mp max mp (27)

The similarity between (27) the SSM model (22) is clear. However,
one advantage of this form is that no model is required for how other
sea state parameters vary with Hs.

The density function p H( )mp is modelled using the POT method,
with the generalised Pareto distribution (GPD) fitted to exceedances of
Hmp above some high threshold. The fitting of the GPD and the selection
of the threshold is discussed in Section 6.3.

4.3.2. The Monte Carlo method
Monte Carlo methods have been applied to the estimation of ex-

treme load statistics for various offshore structures. A Monte Carlo
method for estimating the short-term mean upcrossing rate of high le-
vels (which can be used in place of the short-term distribution) was
presented by Naess et al. (2007a, b). This short-term mean upcrossing
rate was then used in combination with a model for the long-term ex-
tremes that is equivalent to the SSM method (see e.g. Sagrilo et al.,
2011), which ignores the effects of serial correlation in sea states.
Brown et al. (2017) used a Monte Carlo approach to estimate the ex-
treme response of an FPSO in squall conditions. Brown et al. (2017)
conducted numerical simulations to create a database of the short-term
extreme response in squall conditions, which was then resampled in
order to estimate the long-term extreme response.

Mackay and Johanning (2018b) proposed a storm-based Monte
Carlo (MC) method for calculating return periods of individual wave
and crest heights. The motivating idea for the method is that if a long
time series of individual wave heights were available, then

≤H hPr( |any storm)max could be estimated directly from the data using
a standard POT approach, without the need to calculate

≤H hPr( |MS)max or fit equivalent storms. In the MC method, a random
realisation of the maximum wave height in each sea state is simulated
from the metocean parameter time series and the GPD is fitted to storm
peak wave heights exceeding some threshold. This gives an estimate of

≤H hPr( |any storm)max , but subject to a high sampling variability, due
to the random variability in the storm peak wave heights. To account
for the random variability in the simulated wave heights, this process is
repeated n times and the parameters of the fitted GPDs are averaged
over the n trials to obtain a stable estimate of ≤H hPr( |any storm)max .
Mackay and Johanning (2018b) showed that using =n 1000 is suffi-
cient to obtain a stable estimate and noted that the computational time
for a 30-year dataset is around 1min on a standard contemporary
laptop.

The random maxima in each sea state are simulated by generating a
sequence of uniformly distributed random variables ∈P [0,1]i ,

= …i M1, , , where M is the number of sea states in the metocean da-
taset. The random maximum wave height in each sea state, Hmax i, , is
then obtained from (15) as the solution of

= ≤P H H σPr( | ),i
N

max i i
1/

,
i (28)

where =N D T/i σ z i, , as before. Many models for ≤H h σPr( | ) can be in-
verted analytically to obtain a closed form solution for the random
maximum wave heights. However, even if this is not possible, inter-
polation of ≤H h σPr( | ) to the desired probability gives a simple means
of for calculating the random maximum wave heights. The difference
between the MC method of Brown et al. (2017) and that of Mackay and
Johanning (2018b) is that in the latter study a new set of random
maximum wave heights are generated on each trial via (28), whereas in
the former study a pre-determined set of load maxima are resampled.

A threshold must be selected for fitting the GPD to storm peak wave
heights. Selecting a threshold for each iteration of the MC method
would be impractical. Mackay and Johanning (2018b) recommended
that the threshold is selected prior to the MC simulations, using the
median value of the maximum wave height in each sea state, denoted
Hmed, which is calculated from (28) by setting =P 0.5i in each sea state.
The median values can then be declustered to select the peak values in
each storm and the threshold can be selected, following the procedures
outlined in Section 6.3. The choice of declustering criteria is discussed
in Section 6.2.

The MC method could also be applied to estimate the SSM and AW
distributions directly from the data, removing the need to model the
variation of the short-term distribution parameters with Hs. However,
for the AW method, simulating all waves for each sea state would be
very computationally intensive and these ideas are not pursued further
here.

5. Comparison in simplified example

There are two main differences between the AW and SSM methods
and storm-based methods. Firstly, both the AW and SSM methods make
the implicit assumption that there is no serial correlation in sea states.
Secondly, the AW and SSM methods both require that models are es-
tablished for the mean values of the short-term distribution parameters
as a function of Hs. Before comparing the methods in a realistic setting
where both of these differences become relevant, it is useful to use a
simplified example to isolate the effect of serial correlation in sea states.

In this simplified example it is assumed that individual wave heights
follow a Rayleigh distribution:

⎜ ⎟⎜ ⎟≤ = − ⎛

⎝
− ⎛

⎝
⎞
⎠

⎞

⎠
H h H h

H
Pr( | ) 1 exp 2s

s

2

(29)

It is also assumed that the wave period is constant at =T 10sz , so
that the distribution of the maximum wave height in a sea state is de-
pendent only on Hs. Suppose that the time series of Hs is composed of
discrete, independent storms, each comprising a fixed number, N ,
consecutive sea states. The number of storms per year is =M NPY N/ ,
where NPY is the number of sea states per year. We further assume that
Hs is constant during each storm, so that the marginal distribution of Hs
is equal to the distribution of storm peak Hs. For the sea state-based
model, the distribution of the maximum wave height in a year is cal-
culated from (22) as

∫≤ = ⎡

⎣
⎢ ≤ ⎤

⎦
⎥

∞

H h p H H h H HPr( 1 year) ( )Pr( | )dmax s max s s

NM

0 (30)

For the storm-based model, the distribution of the maximum wave
height in a year can be calculated by integrating the distribution of the
maximum wave height in a storm, conditional on storm peak Hs, over
the distribution of storm peak Hs (which is equal to the marginal dis-
tribution of Hs in this example), which gives

∫≤ = ⎡

⎣
⎢ ≤ ⎤

⎦
⎥

∞

H h p H H h H HPr( 1 year) ( )[Pr( | )] dmax s max s
N

s
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0 (31)
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Comparison of (30) and (31) shows that the assumptions about in-
dependence of sea states and storms lead to differing expressions for the
distribution of the annual maximum wave height. To quantify the dif-
ference between the two models, we assume that sea states have a 1-h
duration, storms consist of =N 100 sea states and there are =NPY 8760
sea states per year. We also assume that Hs follows a Weibull dis-
tribution:

⎜ ⎟≤ = − ⎛
⎝

−⎛
⎝

⎞
⎠

⎞
⎠

H x x
α

Pr( ) 1 exps

β

(32)

where = =α β 2. Fig. 1 shows the distributions of the annual maximum
wave heights from the sea state (30) and storm-based models (31) for
this simple example. Results from the AW model (13) are also included
for comparison. As expected from (23) the AW and SSM models give
almost identical results for lower exceedance probabilities. The AW and
SSM method predicts larger wave heights than the storm method at a
given exceedance level (i.e. larger return values), but the difference
decreases at lower exceedance probabilities (i.e. larger return periods).
In this example, the difference is due only to the differing assumptions
about independence of sea states and storms. The results are consistent
with the observation made in the introduction, that neglecting serial
correlation results in a positive bias in estimates of extreme values.
Strictly speaking, we have only shown that the sea state-based model

gives larger return values, rather than a positive bias. However, the
simulation studies presented in Section 7 will show that it is in fact a
positive bias. The assumptions made in this example are clearly un-
realistic. In the following two sections it will be shown that biases
observed in this artificial example also occur under realistic conditions.

6. Application to measured data

In this section the methods used to fit the models to the data are
discussed. Two sets of measured wave data are used to illustrate the
procedures. The datasets used are described in Section 6.1. The selec-
tion of declustering criteria for the storm-based methods is discussed in
Section 6.2. Parameter estimation and threshold selection for the GPD
are discussed in Section 6.3. Finally, a comparison of return values of
individual crest heights calculated using each method is presented in
Section 6.4.

6.1. Datasets

The datasets used are long-term records from wave buoys in two
distinct wave climate regimes and are the same as those used in Mackay
and Johanning (2018a). The first dataset, referred to as Site A, is from
NDBC buoy number 44025, located off the coast of Long Island, New
York, in a water depth of 36m. The dataset consists of 25 years of
hourly records of wave spectra over the period April 1991–December
2016. The second dataset, referred to as Site B, is from NDBC buoy
number 46014, located off the coast of Northern California in a water
depth of 256m. The dataset consists of 35 years of hourly records of
wave spectra over the period April 1981–December 2016. Scatterplots
of Hs against Tz for the two datasets are shown in Fig. 2. Both datasets
have similar maximum observed Hs, with a maximum Hs at Site A of
9.64m and a maximum at Site B of 10.34m. In the shallower water site,
the maximum values of Hs occur for the steepest seas with

< <s0.06 0.07z (where =s πH gT2 /z s z
2), whilst at the deeper site the

extreme values of Hs occur for a wider range of steepness. The range of
Tz observed at the Californian site is also much larger than at the New
York site.

In the examples presented in Sections 6.4 and 7, the Forristall
(2000) model for the short-term distribution of crest heights in direc-
tionally spread seas, will be used to illustrate the application of the
long-term models. The Forristall model assumes that crest heights, C ,
follow a Weibull distribution:
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(33)

The parameters α and β are defined in terms of the significant

Fig. 1. Distribution of the maximum wave height in a year from the all-wave,
sea-state-maxima and storm methods for hypothetical case of independent
rectangular storms.

Fig. 2. Scatter plots of Hs against Tz for the two datasets used in this study. Colour indicates density of occurrence. Black dashed lines indicate sz from 0.01 to 0.07 at
intervals of 0.01. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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steepness, sm, and Ursell number, Urs, defined as

=s πH
gT

2 ,m
s

m
2 (34)

=U H
k d

,rs
s

m
2 3 (35)

where km is the finite depth wave number corresponding to Tm and d is
the water depth. The distribution parameters are given by

= + +α s U0.3536 0.2568 0.0800m rs (36)

= − − +β s U U2 1.7912 0.5302 0.2824m rs rs
2 (37)

The AW and SSM methods both require models for the mean values
of α, β andTz as a functions of Hs. Mackay and Johanning (2018a) fitted
linear models for the variation of the mean values of these parameters
as a function of Hs, which are used here as well. The reader is referred
to Mackay and Johanning (2018a) for details.

6.2. Selection of declustering criteria

The objective of this article is to establish the accuracy of storm-
based methods for estimating return periods of individual wave heights
and contrast this to methods which neglect serial correlation in sea
states. It is therefore important to consider the correlation structure of
sea state time series in some detail and to establish a rigorous method of
estimating a minimum separation time between local maxima in the
wave height time series, for which adjacent maxima can be considered
statistically independent.

Most statistical methods developed to quantify dependence between
extreme events assume that the time series is stationary. Time series of
Hs exhibit a clear seasonal variation in storm peak wave heights, which
introduces a long-range dependence structure between extreme events
and a non-stationarity in the time series. The long-range dependence
due to seasonal variability is deterministic in origin, with the variation
having a period of exactly one year. The variation can therefore be
filtered out and the normalised, stationary time series can be examined
for shorter-range dependence of extreme events using established sta-
tistical methods.

The autocorrelation in storm peak Hs is shown in Fig. 3 for both
datasets. In this example, storm peaks are defined as the maxima within
a 5-day moving window. The lag shown is the number of storms se-
parating adjacent peaks. The median time between storm peaks is 9.79
days for Site A and 9.86 days for Site B. The peaks in autocorrelation
function occur around lags of ∼36 and ∼72 storms, which corresponds

to the annual signal. The pattern in the autocorrelation in storm peak Hs
is very similar for these two locations, which is due to both datasets
being located at similar latitudes where the level of seasonal variability
is similar. The slight difference between the autocorrelation functions
for the two buoys is likely to be due to differences in the distribution of
storm lengths and the effects of missing data in time series, which has
not been accounted for in this simple analysis.

The seasonal variation in Hs can be modelled as:

= +H t m t s t H t( ) ( ) ( ) ( )s s
stat (38)

where H t( )s
stat is assumed to be a stationary time series and m t( ) and

s t( ) are deterministic periodic functions with period one year, re-
presenting the mean and standard deviation (STD) of the distribution of
Hs at a given time in the year (see Monbet el al, 2007 and references
therein). The functions m t( ) and s t( ) are estimated here using the
method of Athanassoulis and Stefanakos (1995), with the mean and
STD of Hs modelled using low order Fourier expansions. Figs. 4 and 5
show the mean and STD calculated in 10-day bins throughout the year
for each dataset, together with a second order Fourier expansion of the
binned values. The pattern in the seasonal variation differs between the
two locations, but the second order model appears adequate for both
locations. Figs. 4 and 5 also show the original data plotted against the
day of year and the normalised data, Hs

stat , together with 90, 95 and
99% quantiles calculated in 15-day windows (the longer bin length has
been used here for stability). It appears that the normalised data is
approximately stationary for Site A, but there is some residual trend in
the extreme values at Site B. However, as will be shown below, the
normalisation seems to be sufficient to examine the short-range de-
pendence (i.e. on time scales less than seasonal variation) in the ex-
treme values.

Fig. 3 showed the autocorrelation function between storm peak Hs
for peaks separated by at least 5 days. If we wish to assess the depen-
dence structure in the extreme values without pre-selecting a declus-
tering criterion to identify storm peaks, then the autocorrelation func-
tion is not appropriate since it measures the correlation between data at
all levels. Davis and Mikosch (2009) introduced the concept of the
extremogram as an analogue of the autocorrelation function for se-
quences of extreme events in a time series. The definition of the ex-
tremogram presented by Davis and Mikosch (2009) is used for assessing
dependence between multivariate time series, but the concept is also
applicable to univariate time series. To simplify the notation, the de-
finition will be presented here for univariate time series only.

For a stationary univariate process X( )t , the extremogram is defined
is defined as

= > >
→∞

+ρ τ X u X u( ) lim Pr( )
u

t τ t (39)

In the univariate case, the extremogram is the same as the tail de-
pendence coefficient between Xt and +Xt τ (Beirlant et al., 2004). To test
for correlation in exceedances at finite levels, an estimate of the ex-
tremogram at level u can be defined as
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where Iu is the indicator function

= ⎧
⎨⎩

>
≤

I X X u
X u

( ) 1 if ,
0 if .u

(41)

Two events A and B are independent if =P A B P A( | ) ( ). Therefore, if
exceedances of threshold u at separation τ are independent then

− > =ρ τ X u( ) Pr( ) 0u . At extreme values > →X uPr( ) 0, and Davis and
Mikosch (2009) showed that, in this limiting case, ρ τ( ) has the prop-
erties of a correlation function. However, at finite levels >X uPr( ) is
non-negligible and hence can be subtracted from ρ τ( )u to assess in-
dependence.Fig. 3. Autocorrelation in storm peak Hs.
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Fig. 4. Seasonal variation plots for Site A. Lower panels: 10-day mean and STD of Hs and second-order Fourier expansion. Upper panels: Hourly values of Hs (left) and
normalised Hs (right) against day of year. Red dashed lines are 90, 95 and 99% quantiles in 15-day bins. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. As Fig. 4, but for Site B.
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Fig. 6 shows ρ τ( )u and − >ρ τ X u( ) Pr( )u for the normalised Hs data
for both datasets. Values are shown for separation times between 0 and
10 days and a range of threshold levels. A threshold of 0 corresponds to
just over the 50th percentile for both datasets, whilst the upper
threshold level shown corresponds approximately the 99.9th percentile
for both datasets. Obviously, the threshold value of 0 does not represent
extreme values, but the range of thresholds is shown to illustrate the
difference in the dependence structure between common and extreme
values. It is also interesting to note that even for lower sea states the
correlation decays to zero after about 5 days for both datasets. This
means that selecting a declustering criteria that ensures independence
at lower levels will also ensure independence at extreme levels.

For Site A, the dependence structure remains almost constant with
threshold for most of the range, with events separated by ∼4 days
being effectively independent. For the highest thresholds, the correla-
tion range decreases rapidly, with events separated by ∼1 day being
effectively independent for a threshold of 5.5. In contrast, Site B ex-
hibits a more continuous gradual decrease in dependence with
threshold, but a similar pattern in dependence at the highest levels.

By applying a seasonal normalisation and examining the depen-
dence structure of the normalised time series, we are making the im-
plicit assumption that the dependence structure of the smaller storms in
the summer months is the same as that for the larger storms in the
winter months, except for a shift in mean and STD of the time series. It
is conceivable that this is assumption is invalid, and that the duration of
high peaks differs in summer and winter. However, selecting a suffi-
ciently large minimum separation time for declustering will ensure that
the declustered events are effectively independent.

Given these observations, defining storms as local maxima in Hs in a

5-day window appears to be sufficient to ensure independence. This
definition of storms will be used from here onwards. A separation time
of 5 days is also reasonable based on physical arguments, since peaks
separated by 5 days will correspond to waves generated from separate
low pressure systems.

It is emphasised that the seasonal normalisation applied above has
only been used to examine the dependence structure in the extreme
values and define a declustering criterion. No model of the seasonal
variation is required for estimating the long-term distribution of wave
heights. The effect of seasonal variability on the simulated time series
and extreme values is discussed in Section 7.1.

6.3. Fitting of distributions

So far, the method used to fit the long-term distribution models to
the data has not been discussed. The AW and SSM methods both require
a model for of p H( )s , the equivalent storm method requires an estimate
of p H( )mp , and the MC method requires multiple estimates of

≤H hPr( |any storm)max . For the storm-based methods, estimates of the
distributions are only required for storms where the maximum wave
height exceeds a threshold level, and the occurrence rate of storms
exceeding the threshold level is accounted for in the calculation of re-
turn periods (2). This means that the standard POT approach can be
adopted for the storm-based methods.

For the AW and SSM methods, a model for p H( )s is only needed for
the tail of the distribution as well, since for high values of h and low
values of Hs, > ≈H h σ HPr( | ( )) 0s . Therefore, the GPD can also be used
to model p H( )s for the AW and SSM models and we can set the lower
limit of integration in (13) and (18) as the threshold level used to fit the

Fig. 6. Extremogram plots for normalised Hs data for both dataset. Colour of lines denote threshold value u from 0 to 4 at intervals of 5m. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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GPD. This avoids the need to establish a model for the distribution of
the entire range of values of Hs, which can be problematic, since fitting
a model for the entire range of Hs does not guarantee a good fit to the
highest values which have the strongest influence on the extreme wave
heights. Ferreira and Guedes Soares (1999) showed that three models of
p H( )s which all had a good fit over the bulk of the data, gave estimates
of 100-year Hs which differed by over 5m for a dataset from the Por-
tuguese coast. Just modelling the tail of the distribution avoids this
problem.

There are conflicting requirements in selecting the threshold used
for modelling p H( )s . The threshold must be low enough that the in-
tegrals (13) and (18) are not affected, but high enough to ensure a good
fit of the GPD to the data. For the datasets considered here, it was found
that the maximum percentile which could be used for the threshold
level differed between the two datasets, with the integrals for Site A
remaining invariant for thresholds up to the 99.5% quantile ( ≈H 8ms ),
but the integrals for Site B remaining invariant only up to the 95%
quantile ( ≈H 7ms ). The difference in sensitivity is due to the different
shapes of the tails of the distribution (discussed below), with the dis-
tribution for Site A having a “longer tail” than for Site B, meaning that
exceedance probabilities decrease with Hs at a lower rate in the tail of
the distribution for Site A. Fortunately, for both datasets it was found
that the GPD provides a good fit to the data for lower threshold values
than this, as discussed below.

The GPD fitted to the tail of the distribution gives the conditional
non-exceedance probability ≤ >H h H uPr( )s s , where u is the threshold
level. The CDF of Hs can then be calculated as:

≤ = − > − ≤ >H h H u H h H uPr( ) 1 Pr( )[1 Pr( )]s s s s (42)

where >H uPr( )s is the fraction of samples where Hs exceeds the
threshold. The GPD is defined as
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Here, the variable X denotes either Hs, Hmp or Hmax , depending on the
application. The parameters σ and ξ are the scale and shape parameters
respectively. When ≥ξ 0, the distribution is unbounded from above and
referred to as heavy tailed or long tailed. When <ξ 0 the distribution
has a maximum value, equal to −u σ ξ/ , and is referred to as short
tailed. The methods used to estimate the parameters of the GPD and
select the threshold are discussed in the following two subsections.

It is worth noting that some practitioners opt to use the Weibull dis-
tribution for modelling the tail of the long-term distribution, rather than
the GPD. Jonathan and Ewans (2013) discuss differences between the GPD
and Weibull approach and note that using a Weibull distribution implicitly
constrains the tail to be unbounded from above. It is reasonable to expect
an upper bound on storm peak Hs or wave heights, due to physical con-
straints such as fetch limitations or water depth. The use of the GPD allows
for the possibility of an upper bound on the tail of the distribution,
whereas the Weibull distribution does not. The use of the GPD for mod-
elling the tail of the distribution is also justified by asymptotic arguments
(see e.g. Coles, 2001). For these reasons, the GPD has been used to model
the tails of the long-term distributions in this work.

6.3.1. GPD parameter estimation
The method used to estimate the parameters of the GPD can have a

significant influence on results, especially with relatively small sample
sizes (Mackay et al., 2011). The metocean time series available for es-
timating extreme values are typically quite short in relation to the re-
turn periods of interest, resulting in small samples sizes. This means
that using accurate estimators is important. The maximum likelihood
(ML) method is commonly used in metocean applications (e.g.
Jonathan and Ewans, 2013), due to its asymptotic properties of being
unbiased and having the lowest possible variance. However, the ML

estimators do not achieve these asymptotic properties until large
sample sizes. Hosking and Wallis (1987) showed that the ML estimators
are non-optimal for sample sizes up to 500, with higher bias and var-
iance than other estimators, such as the moments and probability-
weighted-moments estimators. Hosking and Wallis also noted that
sometimes solutions to the ML equations do not exist and that at other
times when a solution does exist there can be convergence problems
with the algorithm they used to find them.

Estimation of the GPD parameters is the subject of ongoing research.
A quantitative comparison of recent methods for estimating the para-
meters was presented by Kang and Song (2017). They concluded that
the empirical Bayesian-likelihood method (EBM) of Zhang (2010) has
one of the best performances in a wide range of cases. The EBM method
is both computationally efficient and has low bias and variance com-
pared to other methods, which is especially important for the MC
method, where the fitting is performed for each random trial. The EBM
method has therefore been used in this work. An algorithm for calcu-
lating the EBM estimators of the GPD parameters was provided by
Zhang (2010), using the R statistical language, which can easily be
translated into other codes. The reader is referred there for details.

6.3.2. Threshold selection
The selection of the threshold for fitting the GPD is a compromise

between having a sufficient number of observations and violating the
asymptotic arguments which justify the use of the GPD. Various
methods have been proposed for selecting an appropriate threshold. An
overview of graphical methods is presented by Coles (2001) and
Jonathan and Ewans (2013) discuss some more recent studies. In this
work the threshold has been selected by fitting the GPD for a range of
thresholds and selecting the threshold as the lowest value for which the
shape parameter ξ and estimates of high quantiles of the distribution
reach an approximately stable value.

For each threshold value a bootstrap technique is used to establish
confidence bounds on the estimates. At each trial of the bootstrap
procedure, a random error is added to each resampled data point,
corresponding to the sampling uncertainty in the measurement. This
addition of a random error helps smooth the threshold plots, making
trends easier to identify. The sampling distribution of Hs is approxi-
mately Guassian, with a coefficient of variation of =H α T DCOV( ) /s m σ
where ≈α 0.48 for a Pierson Moskowitz spectrum and ≈α 0.61 for a
JONSWAP spectrum with peak enhancement factor of 3.3 (Forristall
et al., 1996). In our datasets =D s1200σ and the mean value of T D/m σ
was 0.067 for Site A and 0.082 for Site B. A value of =HCOV( ) 0.04s has
been used for both datasets as a representative value, given the range of
spectral shapes and values of Tm.

Threshold selection plots for the fit of the GPD to measured Hs for
each dataset are shown in Fig. 7. Note that for the AW and SSM
methods, the GPD is fitted to all values of Hs exceeding the threshold
and no declustering is applied. For Site B the threshold has been se-
lected as 7.5m, since both the GPD shape parameter and 50-year return
value of Hs tend to approximately constant values above this threshold.
There are 44 storms where the peak Hs exceeds 7.5 m or ∼1.4 storms
per year. For Site A, the shape parameter and 50-year return values also
appear approximately constant for thresholds above ∼7.5 m. However,
in this case there are only two storms where the peak Hs exceeds 7.5 m,
which is insufficient to establish a reliable fit to the tail of the dis-
tribution. Instead, the threshold has been set at 5m, where there is also
a period of stability in the GPD shape parameter, and for which there
are 54 storms where the peak Hs exceeds the threshold (2.4 storms per
year). The fit of the GPD to the data at the selected thresholds is shown
in Fig. 8. In both cases, the GPD provides a good visual fit to the data.
Note that at Site A, for the two storms where the peak Hs exceeds 7.5 m,
there are 17 hourly records with Hs exceeding 7.5 m.

The fitting of equivalent storms (defined in terms of the Gumbel and
GEV distributions) to the two datasets was discussed in detail by
Mackay and Johanning (2018a) and is not repeated here. The threshold
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selection plots for the fit of the GPD to the most probable maximum
crest height in each storm, Cmp, are shown in Fig. 9. In this case, there is
a clear choice of threshold for both datasets. For Site A both the shape
parameter and 50-year return value of Cmp are approximately stable for
thresholds above ∼5m and for Site B stability is reached at ∼5.5 m.
The fit of the GPD to each dataset at the selected threshold level is
shown in Fig. 10 and appears satisfactory in both cases. For Site A the
distribution is long-tailed due to the occurrence of two large storms,

with Cmp ∼2m higher than all other storms. In contrast the distribution
for Site B is short-tailed and there is a relatively close grouping in the
values of Cmp for the largest storms.

For the MC method the threshold is selected by fitting to the de-
clustered values of Cmed (the median value of the maximum crest height
in each storm, defined in Section 4.3.2). Fig. 11 shows the maximum
value of Cmed in each storm compared to Cmp for both datasets. The
value of Cmp is slightly larger than Cmax( )med on average, but the two

Fig. 7. Threshold plots for fit of GPD to Hs for both datasets.

Fig. 8. Fit of the GPD to the tail of the distribution of Hs for both datasets.
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variables are strongly correlated with a Pearson correlation coefficient
in excess of 0.99. Given the very strong correlation in the two variables,
the choice of threshold for the equivalent storm method will also be
appropriate for the MC method and has been applied here.

6.4. Comparison of return values of individual crest heights

Fig. 12 shows the return values of maximum crest heights calculated
using each method. For both datasets the AW method gives the highest
predicted crest heights at return periods of 1 year, but converges with

the predicted crest heights from the SSM method for return periods of
greater than 10 years, as expected from the theoretical considerations
presented in Section 4. The storm-based methods agree well for both
datasets. For Site A, the Gumbel and GEV methods are in close agree-
ment over the entire range of return periods, whereas for Site B the
Gumbel method produces slightly lower estimates at higher return
periods. Mackay and Johanning (2018a) showed that for this dataset,
the Gumbel and GEV methods agreed better if Nln( ) is modelled as
linearly dependent on Cmp, rather than constant. The difference in the
estimate of Cmax at the 100-year level between the Gumbel and GEV

Fig. 9. Threshold plots for fit of GPD to Cmp for both datasets.

Fig. 10. Fit of the GPD to the tail of the distribution of Cmp for both datasets.
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methods is around 0.2 m and remains similar at the 1000-year level.
Given the uncertainty in the estimates due to the finite length of the
metocean dataset (discussed further in Section 7.2.2), the difference
between the two methods is not significant.

For Site A, the AW and SSM methods result in significantly higher
predictions at lower return periods than the storm-based methods, with
a difference of 1.5m at a return period of 10years and 1.1 m at a return
period of 100years. For Site B, the AW and SSM methods agree better
with the storm-based methods and give slightly lower predictions at
return periods above 50 years.

Given that the AW and SSM methods neglect serial correlation in sea
states, it would be reasonable to expect that they would give higher
estimates of return values than the storm-based methods for both da-
tasets. However, the difference between the return values calculated
using AW and SSM methods and storm-based methods will depend both
on the level of serial correlation in the extreme values and also any
differences in the fitted distributions of Hs and Cmp. Given the un-
certainty in the fitted distributions, it is not possible to conclude from
this example whether the differences in the return values observed for
Site A are due to serial correlation or uncertainty in the fitted dis-
tributions. The simulations presented in the following section remove
the influence of the uncertainty in the fitted distributions, to illustrate
the differences that arise from serial correlation only.

7. Application to synthesised data

In this section, synthesised time series of sea states are used to

investigate the accuracy of each method. The synthetic time series are
not intended to be precise representations of the wave climates at either
of the locations considered in the previous section, but are intended to
capture realistic features of wave climates in order to assess the accu-
racy of the models for the long-term distributions of individual crest
heights. Section 7.1 describes the method used to synthesise the time
series and the application of the models to the synthetic data is de-
scribed in Section 7.2.

7.1. Creation of synthetic time series

Numerous methods have been proposed for generating synthetic
time series of sea states (see Monbet et al., 2007 for a review). The
challenge here is to generate a synthetic time series where the extreme
characteristics are representative of a real situation and the joint evo-
lution of sea state parameters during storms follows realistic patterns,
matching the observed dependence structures (both in terms of serial
correlation and the joint distribution of parameters). A block-resam-
pling method (Härdle et al., 2003) has been applied here, where the
measured time series of sea states is divided into discrete blocks and
these blocks are resampled with replacement. The blocks correspond to
storms where the peak Hs can be considered independent. Independent
values of storm peak Hs are defined in the same way as before, as
maxima within a 5-day moving window. The dividing points between
blocks are defined to be the minimum value of Hs between adjacent
storm peaks. Blocks with more than 10% missing data have been dis-
carded. Dividing the time series in this way ensures that the maximum

Fig. 11. Comparison of maximum value of Cmed in each storm with Cmp. Dashed lines show 1:1 relation.

Fig. 12. Return values of maximum crest heights calculated from measured data using each method.
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crest heights in each block are independent and that storm histories are
realistic.

If the time series was resampled without modification, this would
mean that the maximum Hs over any time period would be the max-
imum observed Hs. To overcome this, a distribution is fitted to the
observed values of storm peak Hs, which can be used to extrapolate to
extreme values (described below). To generate a storm with a random
peak Hs, a random variable is generated from the fitted distribution and
a block is selected at random from the 20 measured storms with the
closest peak Hs. The values of Hs in the randomly selected measured
storm are then linearly rescaled so that the peak Hs matches the ran-
domly generated value. The values of Tm and Tz are scaled to maintain
the observed steepness. If we denote the ratio of the random storm peak
Hs to the measured storm peak Hs as =r H H/s peak

R
s peak
M

, , (where the su-
perscripts denote the random and measured values) then the rescaled
values of Tm and Tz in the random storm are given by =T T rm

R
m
M and

=T T rz
R

z
M .

The reason for selecting the random storm from only the measured
storms with the closest values of peak Hs is that the characteristics of
the storms change with Hs, so sampling from the nearest neighbours
preserves this relation. From Fig. 2 it is clear that the distribution of Tz
is dependent on Hs. The distribution of Hs within a storm is also con-
ditional on the value of the storm peak Hs. Fig. 13 shows the distribu-
tion of H H/s s peak, , binned by the value of storm peak Hs. It is evident that
the distribution changes with the value of storm peak Hs and that the
patterns differ between the two datasets, with the largest storms at Site
A having a more peaked shape than the largest storms at Site B.

To avoid the problems with associated with initial distribution
methods, discussed in Section 6.3, the distribution of storm peak Hs is
fitted with a two-part model, using a lognormal model for the body of
the data and a GPD model for the tail. A smooth transition between the
models for the body and tail of the distribution is achieved using a
mixing function, defined as

⎜ ⎟= ⎛
⎝

+ ⎛
⎝

− ⎞
⎠

⎞
⎠

m h h v
d

( ) 1
2

1 tanh
(44)

where v is the mixing point and d is the mixing distance. The model for
the CDF of storm peak Hs is then given by

≤ = − +H h m h P h m h P hPr( ) (1 ( )) ( ) ( ) ( )s peak body tail, (45)

It was found that setting =d 0.5 and = +v u d, where u is the
threshold at which the GPD is fitted, gave a smooth transitions for both
datasets. The threshold for the GPD was selected as =u 5.25m for Site A
and =u 5.75m for Site B. The fit of the models to the data are shown in
Fig. 14. The models provide a good visual fit, both in the bodies and the
tails of the distributions.

Scatter plots of Hs against Tz for example 500-year simulations are

shown in Fig. 15, together with the measured Hs against Tz. The block-
resampling method provides a realistic-looking joint distribution,
which replicates the observed shapes reasonably well and preserves the
relationship between Hs and significant steepness. However, as the
method does not create new storm histories, but simply rescales mea-
sured storms, the storm with the largest value of Tz at Site A has been
resampled several times, exaggerating this part of the distribution. It is
reasonable to ask whether resampling of measured storms will give an
adequate representation of the variability in storm characteristics.
Mackay and Johanning (2018a) showed that the distribution of the
maximum crest heights in storms can be very accurately represented in
terms of the three-parameter GEV. Moreover, the joint distribution of
the fitted GEV parameters exhibits remarkably regular characteristics,
with the scale parameter (b) being strongly correlated to the location
parameter ( ≈a Cmp) and the shape parameter (k) taking a narrow
distribution of values, approximately independent of a. Due to this
regularity in the distribution of the maximum crest heights in measured
storms, the block-resampling method should give an adequate re-
presentation of the variability in storm characteristics.

No attempt has been made to capture the seasonal variation in sea
states in the synthetic time series. The rationale for this is that sampling
all storms at random will capture the distribution of storms throughout
the year. Over a one year section of simulated time series the seasonal
variation in storms should be captured on average. Moreover, as we
have assumed that the time series is composed of independent blocks, it
is only the distribution of storms within the year that determines the
distribution of the maximum crest height in the year and not the order
in which storms occur. This argument is analogous to the argument that
the order of sea states within a storm does not affect the distribution of
the maximum crest height in the storm.

7.2. Results and discussion

A 100,000-year synthetic time series of sea states was generated for
each dataset. For each sea state a random maximum crest height was
simulated from the Forristall (2000) distribution using the method
described in Section 4.3.2. The largest crest in each year of the synthetic
time series was extracted and used to form an empirical estimate of

≤C hPr( 1 year)max , from which return values were calculated using
(1). The return periods estimated from the 100,000-year simulation
have approximately a 3% STD at the 100-year level and a 10% STD at
the 1000-year level (see Appendix A). The synthetic time series were
used to assess the accuracy of the SSM, ES and MC methods in two
ways, as described in the following sections. The AW method was not
considered in this section as it gives identical results to the SSM method
for return periods above 10years.

Fig. 13. CDF of normalised Hs, binned by peak Hs. Colour of line indicates peak Hs in metres. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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7.2.1. Example 1 – distributions derived from 100,000-year simulation
In the first example, the long-term distributions ≤H hPr( )s and

≤C hPr( )mp have been derived from the full 100,000-year simulated
time series. This effectively eliminates the uncertainty associated with
fitting the distributions and isolates the effect of serial correlation on
the estimated return values. The values of Cmp were calculated explicitly
for each simulated storm, since the variation of Cmp with Hs peak, is
nonlinear due to the dependence of the short-term distribution para-
meters on the Ursell number.

To reduce computational time, the Gumbel and GEV distributions
were not fitted to the distribution of the maximum crest height in the
simulated storms. Instead the Gumbel and GEV parameters that were
calculated from the measured data were applied in the simulations (i.e.

the mean value of Nln( ) for the Gumbel method and for the GEV the
mean value of k and linear model b H( )mp ). Similarly, the linear models
for the variation of the short-term distribution parameters α H( )s and
β H( )s derived from the measured data were also used here for the
calculations using the SSM method.

The MC method is not considered in this example. As the long-term
distribution is assumed to be known, there is no fitting stage involved
for the MC method. This means that the application of the MC method
to the simulated sea states would be identical to the method used to
derive the simulated crest heights.

The return values of Cmax calculated using the SSM and storm-based
methods are compared to the simulated values in Fig. 16. The estimates
are very similar to those shown in Fig. 12, indicating that the models

Fig. 14. Mixture models fitted to measured values of storm peak Hs.

Fig. 15. Scatter plots of Hs against Tz for measured data and 500-year simulation.
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derived for ≤H hPr( )s and ≤C hPr( )mp for the measured data were
reasonably accurate. The return values from the GEV method are very
close to the simulated values for both datasets, whereas the Gumbel
method produces slightly lower estimates than the simulated values. As
mentioned in Section 6.4, this is likely to be due using a constant value
of Nln( ) in the Gumbel model rather than a value that is linearly de-
pendent on Cmp (see Mackay and Johanning, 2018a). The SSM method
gives return values that are close to the simulated values for Site B, but
significantly overestimates return values for Site A.

In Section 6.2 the serial-dependence in sea states during high storms
was shown to be similar for both datasets. Why then does neglecting
serial correlation give reasonable results for one dataset but not the
other? The fitted distribution of storm peak Hs for Site B was short-
tailed, with the GPD shape parameter = −ξ 0.23, whereas the dis-
tribution of storm peak Hs for Site A was (marginally) long-tailed, with

=ξ 0.03. This means that the difference between the 10-year and 100-
year Hs is larger for Site A than for Site B. So when a storm occurs with

>H Hs s,100 at Site B there are only a few sea states with >H Hs s,10,
whereas a storm with >H Hs s,100 for Site A will contain many sea states
with >H Hs s,10. Therefore, neglecting serial correlation will have a
larger impact when the distribution of storm peak Hs is long-tailed.

To test this explanation, the simulations for Site A were repeated
with GPD shape parameter set at values of = − −ξ 0.2, 0.1, 0 and 0.05.
All other variables were left unchanged. In particular, the same set of
measured storms was resampled. The assumed distributions of Hs peak,
are shown in Fig. 17(a) and the bias in the return values of Cmax cal-
culated using the SSM method for each set of simulations are shown in
Fig. 17(b). As expected, the bias increases with increasing shape

parameter. This confirms that the tail shape has the dominant influence
on the level of bias caused by neglecting serial correlation.

7.2.2. Example 2 – distributions derived from 20-year simulations
The second example is designed to examine the robustness of the

estimated return values when the long-term distributions are fitted to
the data. The ‘true’ return periods are calculated in the same way as in
Example 1, using 100,000-year simulations for each dataset. The dis-
tributions ≤H hPr( )s and ≤C hPr( )mp are fitted to 20-year simulations,
which is representative of a real situation using measured or hindcast
data (analogous to that described in Section 6). The thresholds identi-
fied in Section 6.3.2 for fitting the GPD have also been used here. The
fitting process was repeated 1000 times on different 20-year simula-
tions to establish the mean and STD of the return periods calculated
using each method. The mean and STD of the return values over the
1000 simulations are shown in Figs. 18 and 19.

The storm-based methods give very similar predictions for both
datasets. They produce a small positive bias in the predicted return
values for both datasets. This positive bias is a result of the estimators
used for the GPD parameters, which is a known feature of the EBM
method (Kang and Song, 2017). However, of the estimators considered,
the EBM method performed the best in terms of bias and STD. In par-
ticular, using ML estimators results in larger bias and much slower
computations. The Gumbel and GEV methods have very similar STDs
for both datasets. The STD for the MC method is similar to that for the
Gumbel and GEV methods at return periods up to 100 years, but differs
slightly at longer return periods, with a slightly higher STD for Site A
and slightly lower STD for Site B.

Fig. 16. Return values of maximum crest heights from simulations and calculated from sea-state-maxima and storm-based methods for case when the long-term
distribution is known.

Fig. 17. Left: Assumed distributions of storm peak Hs with various GPD tail shapes. Right: Bias in return values of crest heights using sea-state-maxima method for
simulations with various GPD tail shapes.
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The SSM method performs similarly here to the previous examples,
with a significant positive bias for low return periods at Site A and a
negative bias at high return periods. For Site B the estimates from the
SSM method are in close agreement with the simulated return values.
Interestingly, the SSM method gives a higher STD in return value esti-
mates than the storm-based methods at return periods less than 200
years, but lower STD at longer return periods. The higher STD at low
return periods is likely related to the SSM method neglecting serial
correlation. When a single large storm occurs which has multiple sea
states above the 100 year level, the inclusion of all these sea states in
the long-term distribution affects return values at low return periods. In
contrast, the occurrence of such a storm only affects a single data point
used in the inference for the storm-based methods, which results in
greater stability in the estimates at lower return periods.

8. Conclusions

This paper has considered three methods for combining the long-term
distribution of sea states with the short-term distribution of wave or crest
heights conditional on sea state. It has been demonstrated both theoreti-
cally and numerically that methods which treat all waves as independent
events give the same long-term distributions as methods that treat the
maximum wave height in each sea state as independent events. Both of
these methods neglect the effects of serial correlation in sea states. The
numerical simulations presented in this work show that this can lead to
significant positive bias in estimates of return values of individual wave
and crest heights. The size of the positive bias is dependent on the shape of

the tail of the distribution of storm peak Hs, with longer tails (larger values
of the GPD shape parameter) leading to larger bias.

It was shown that storm-based methods give accurate predictions of
return periods of individual wave heights. The method of Tromans and
Vanderschuren (1995) which models the distribution of the maximum
wave height in a storm using a Gumbel distribution, gives very similar
results to the GEV method of Mackay and Johanning (2018a). The
Gumbel method produces a slight underestimate of return values when
the number of waves in the storm ( Nln( )) is assumed to be constant.

The Monte Carlo method proposed by Mackay and Johanning
(2018b) was shown to compare well to the Gumbel and GEV storm-
based methods for both the measured and simulated data. Of all the
models considered, the Monte Carlo method requires the fewest as-
sumptions and fitting stages with subjective judgements from the user.
It does not require calculating the distribution of the maximum wave
height in measured storms, fitting equivalent storms, estimating joint
distributions of storm parameters or combining distributions via in-
tegration. Also, in comparison to the all-wave and sea-state-maxima
methods, there is no requirement to form models of for the mean values
of the short-term distribution parameters as a function of Hs. It is
therefore recommended that the Monte Carlo method should be used
for calculating return periods of individual wave and crest heights.
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Fig. 18. Mean return values of maximum crest heights from 100,000-year simulations and calculated from 20-year simulations using sea-state-maxima and storm-
based methods.

Fig. 19. STD in return values of maximum crest heights from 20-year simulations using sea-state-maxima and storm-based methods.
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Appendix A. Sampling properties of return periods

The sampling properties of the return periods estimated from the data can be derived as follows. Denote the ordered sample of annual maximum
wave (or crest) heights as ≤ ≤ …≤H H H n(1) (2) ( ), where n is the length of the dataset in years. The empirical non-exceedance probability for the kth

order statistic is defined as

=
+

∼P k
n 1 (A.1)

Define

= ≤P H hPr( )k k( ) ( ) (A.2)

Note that P k( ) is a random variable, but ∼P is not – for any sample ∼P is always given by (A.1). The empirical return period associated with the kth order
statistic is

=
−

∼
∼T
P

1
1 (A.3)

which is also fixed for any sample. However, the true return period, = −T P1/(1 )k( ) , associated with the kth order statistic is a random variable,
whose sampling properties can be derived in terms of the distribution of P k( ). The variable P k( ) follows a beta distribution (David and Nagaraja,
2003), with density function given by:
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The expected values of T and T 2 are:
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The variance of T is given by:

= − =
− − −

T T T kn
n k n k

Var( ) E( ) [E( )]
( ) ( 1)

2 2
2 (A.7)

From (A.1) and (A.3) we have:

= + −∼
∼k n T
T

( 1) ( 1)
(A.8)

Substituting this into (A.7) we arrive at:

Fig. 20. STD in empirical estimates of return periods for simulation length of =n 105 years.
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The function in (A.9) is plotted in Fig. 20 using a value of =n 105 years. The estimated return periods from the 100,000 year simulations have a
3% STD at the 100-year level and a 10% STD at the 1000-year level.

Substituting (A.8) into (A.5) gives the expected value of the sample return periods as:

⎜ ⎟= ⎛
⎝ − +

⎞
⎠

∼
∼T n

n T
TE( )

1 (A.10)

When n is large and ≫ ∼n T , the term in brackets is close to unity, but when ∼T is close to n, there can be a significant positive bias in the sample return
periods. For the 100,000 year simulations the bias is approximately 0.1% at the 100-year level and 1% at the 1000-year level. The bias is therefore
effectively negligible compared to the STD.
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